This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/data_structure/segment_tree/lazy.hpp"
#pragma once
/**
* @file lazy.hpp
* @brief Lazy Segment Tree
*/
#include <cassert>
#include <queue>
#include <vector>
#include "src/algebra/system/monoid.hpp"
#include "src/algebra/system/operation.hpp"
#include "src/utils/sfinae.hpp"
#include "waitings.hpp"
namespace workspace {
template <class _Monoid, class _End,
class Monoid_container = std::vector<_Monoid>,
class Endomorphism_container = std::vector<_End>>
class lazy_segment_tree {
static_assert(
std::is_same<_Monoid, typename Monoid_container::value_type>::value);
static_assert(
std::is_same<_End, typename Endomorphism_container::value_type>::value);
static_assert(has_binary_plus<_Monoid>::value,
"\'_Monoid\' has no proper binary \'operator+\'.");
static_assert(has_binary_multiplies<_End>::value,
"\'_End\' has no proper binary \'operator*\'.");
static_assert(has_binary_multiplies<_Monoid, _End>::value,
"\'_End\' is not applicable to \'_Monoid\'.");
size_t size_orig, height, size_ext;
Monoid_container data;
Endomorphism_container lazy;
internal::waitings wait;
void repair() {
while (!wait.empty()) {
const size_t __i = wait.pop() >> 1;
if (__i && wait.push(__i)) pull(__i);
}
}
void _apply(size_t node, const _End &__e) {
data[node] = data[node] * __e;
if (node < size_ext) lazy[node] = lazy[node] * __e;
}
void push(size_t node) {
_apply(node << 1, lazy[node]);
_apply(node << 1 | 1, lazy[node]);
lazy[node] = _End{};
}
void pull(size_t node) { data[node] = data[node << 1] + data[node << 1 | 1]; }
template <class _Pred>
size_t left_partition_subtree(size_t node, _Monoid mono, _Pred __pred) {
assert(node);
while (node < size_ext) {
push(node);
const _Monoid __tmp = data[(node <<= 1) | 1] + mono;
if (__pred(__tmp))
mono = std::move(__tmp);
else
++node;
}
return ++node -= size_ext;
}
template <class _Pred>
size_t right_partition_subtree(size_t node, _Monoid mono, _Pred __pred) {
assert(node);
while (node < size_ext) {
push(node);
const _Monoid __tmp = mono + data[node <<= 1];
if (__pred(__tmp)) ++node, mono = std::move(__tmp);
}
return (node -= size_ext) < size_orig ? node : size_orig;
}
public:
class iterator {
lazy_segment_tree *__p;
size_t __i;
public:
using difference_type = typename std::make_signed<size_t>::type;
using value_type = _Monoid;
using reference = _Monoid &;
using pointer = iterator;
using iterator_category = std::random_access_iterator_tag;
/**
* @brief Construct a new iterator object
*
*/
iterator() = default;
/**
* @brief Construct a new iterator object
*
* @param __p Pointer to a segment tree object
* @param __i Index
*/
iterator(lazy_segment_tree *__p, size_t __i) : __p(__p), __i(__i) {}
bool operator==(iterator const &rhs) const {
return __p == rhs.__p && __i == rhs.__i;
}
bool operator!=(iterator const &rhs) const { return !operator==(rhs); }
bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }
iterator &operator++() { return ++__i, *this; }
iterator &operator--() { return --__i, *this; }
difference_type operator-(iterator const &rhs) const {
return __i - rhs.__i;
}
/**
* @brief
*
* @return reference
*/
reference operator*() const { return __p->operator[](__i); }
};
using value_type = typename iterator::value_type;
using reference = typename iterator::reference;
iterator begin() { return {this, 0}; }
iterator end() { return {this, size_orig}; }
auto rbegin() { return std::make_reverse_iterator(end()); }
auto rend() { return std::make_reverse_iterator(begin()); }
lazy_segment_tree(size_t __n = 0)
: size_orig{__n},
height(__n > 1 ? 32 - __builtin_clz(__n - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext),
wait(size_ext << 1) {}
lazy_segment_tree(size_t __n, const _Monoid &init) : lazy_segment_tree(__n) {
std::fill_n(std::next(std::begin(data), size_ext), __n, init);
for (size_t i{size_ext}; --i;) pull(i);
}
template <class iter_type, class value_type = typename std::iterator_traits<
iter_type>::value_type>
lazy_segment_tree(iter_type first, iter_type last)
: size_orig(std::distance(first, last)),
height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext),
wait(size_ext << 1) {
static_assert(std::is_constructible<_Monoid, value_type>::value,
"_Monoid(iter_type::value_type) is not constructible.");
for (auto iter{std::next(std::begin(data), size_ext)};
iter != std::end(data) && first != last; ++iter, ++first)
*iter = _Monoid(*first);
for (size_t i{size_ext}; --i;) pull(i);
}
/**
* @return Number of elements.
*/
size_t size() const { return size_orig; }
/**
* @param __i Index of the element
* @return Reference to the element.
*/
_Monoid &operator[](size_t __i) {
assert(__i < size_orig);
__i |= size_ext;
wait.push(__i);
for (size_t i = height; i; --i) push(__i >> i);
return data[__i];
}
void apply(const _End &__e) { apply(0, size_orig, __e); }
void apply(size_t __i, const _End &__e) { apply(__i, __i + 1, __e); }
void apply(size_t first, size_t last, const _End &__e) {
assert(last <= size_orig);
repair();
if (first >= last) return;
first += size_ext, last += size_ext;
--last;
for (size_t i = height; i; --i) push(first >> i), push(last >> i);
++last;
for (size_t l = first, r = last; l != r; l >>= 1, r >>= 1) {
if (l & 1) _apply(l++, __e);
if (r & 1) _apply(--r, __e);
}
for (first >>= __builtin_ffs(first); first; first >>= 1) pull(first);
for (last >>= __builtin_ffs(last); last; last >>= 1) pull(last);
}
/**
* @param first Left end, inclusive
* @param last Right end, exclusive
* @return Sum of elements in the interval.
*/
_Monoid fold(size_t first, size_t last) {
assert(last <= size_orig);
repair();
if (first >= last) return _Monoid{};
first += size_ext, last += size_ext - 1;
_Monoid left_val{}, right_val{};
for (size_t l = first, r = last + 1; l != r; l >>= 1, r >>= 1) {
if (l & 1) left_val = left_val + data[l++];
if (r & 1) right_val = data[--r] + right_val;
left_val = left_val * lazy[first >>= 1];
right_val = right_val * lazy[last >>= 1];
}
while (first >>= 1, last >>= 1) {
left_val = left_val * lazy[first];
right_val = right_val * lazy[last];
}
return left_val + right_val;
}
/**
* @return Sum of all elements.
*/
_Monoid fold() {
repair();
return data[1];
}
/**
* @brief Binary search for the partition point.
* @param __r Right fixed end of the interval, exclusive
* @param __pred Predicate in the form of 'bool(_Monoid)'
* @return Left end of the extremal interval satisfying the condition,
* inclusive.
*/
template <class _Pred> size_t left_partition(size_t __r, _Pred __pred) {
assert(__r <= size_orig);
repair();
__r += size_ext - 1;
for (size_t i{height}; i; --i) push(__r >> i);
++__r;
_Monoid mono{};
for (size_t __l{size_ext}, step{}; __l != __r;
__l >>= 1, __r >>= 1, ++step) {
if ((__l & 1) != (__r & 1)) {
const _Monoid __tmp = data[--__r] + mono;
if (!__pred(__tmp))
return left_partition_subtree(__r, std::move(mono), __pred);
mono = std::move(__tmp);
}
}
return 0;
}
/**
* @brief Binary search for the partition point.
* @param __l Left fixed end of the interval, inclusive
* @param __pred Predicate in the form of 'bool(_Monoid)'
* @return Right end of the extremal interval satisfying the condition,
* exclusive.
*/
template <class _Pred> size_t right_partition(size_t __l, _Pred __pred) {
assert(__l <= size_orig);
repair();
__l += size_ext;
for (size_t i{height}; i; --i) push(__l >> i);
_Monoid mono{};
for (size_t __r{size_ext << 1}, step{}; __l != __r;
__l >>= 1, __r >>= 1, ++step) {
if ((__l & 1) != (__r & 1)) {
const _Monoid __tmp = mono + data[__l];
if (!__pred(__tmp))
return right_partition_subtree(__l, std::move(mono), __pred);
mono = std::move(__tmp);
++__l;
}
}
return size_orig;
}
};
} // namespace workspace
#line 2 "src/data_structure/segment_tree/lazy.hpp"
/**
* @file lazy.hpp
* @brief Lazy Segment Tree
*/
#include <cassert>
#include <queue>
#include <vector>
#line 2 "src/algebra/system/monoid.hpp"
#include <limits>
namespace workspace {
template <class T, class E = T> struct min_monoid {
using value_type = T;
static T min, max;
T value;
min_monoid() : value(max) {}
min_monoid(const T &value) : value(value) {}
operator T() const { return value; }
min_monoid operator+(const min_monoid &rhs) const {
return value < rhs.value ? *this : rhs;
}
min_monoid operator*(const E &rhs) const;
};
template <class T, class E>
T min_monoid<T, E>::min = std::numeric_limits<T>::min() / 2;
template <class T, class E>
T min_monoid<T, E>::max = std::numeric_limits<T>::max() / 2;
template <class T, class E = T> struct max_monoid : min_monoid<T, E> {
using base = min_monoid<T, E>;
using base::min_monoid;
max_monoid() : base(base::min) {}
max_monoid operator+(const max_monoid &rhs) const {
return !(base::value < rhs.value) ? *this : rhs;
}
max_monoid operator*(const E &rhs) const;
};
}
#line 2 "src/algebra/system/operation.hpp"
/**
* @file operation.hpp
* @brief Operation Traits
*/
#include <functional>
#include <type_traits>
#line 2 "lib/cxx17"
#line 2 "lib/cxx14"
#ifndef _CXX14_CONSTEXPR
#if __cplusplus >= 201402L
#define _CXX14_CONSTEXPR constexpr
#else
#define _CXX14_CONSTEXPR
#endif
#endif
#line 4 "lib/cxx17"
#ifndef _CXX17_CONSTEXPR
#if __cplusplus >= 201703L
#define _CXX17_CONSTEXPR constexpr
#else
#define _CXX17_CONSTEXPR
#endif
#endif
#ifndef _CXX17_STATIC_ASSERT
#if __cplusplus >= 201703L
#define _CXX17_STATIC_ASSERT static_assert
#else
#define _CXX17_STATIC_ASSERT assert
#endif
#endif
#include <iterator>
#if __cplusplus < 201703L
namespace std {
/**
* @brief Return the size of a container.
* @param __cont Container.
*/
template <typename _Container>
constexpr auto size(const _Container& __cont) noexcept(noexcept(__cont.size()))
-> decltype(__cont.size()) {
return __cont.size();
}
/**
* @brief Return the size of an array.
*/
template <typename _Tp, size_t _Nm>
constexpr size_t size(const _Tp (&)[_Nm]) noexcept {
return _Nm;
}
/**
* @brief Return whether a container is empty.
* @param __cont Container.
*/
template <typename _Container>
[[nodiscard]] constexpr auto empty(const _Container& __cont) noexcept(
noexcept(__cont.empty())) -> decltype(__cont.empty()) {
return __cont.empty();
}
/**
* @brief Return whether an array is empty (always false).
*/
template <typename _Tp, size_t _Nm>
[[nodiscard]] constexpr bool empty(const _Tp (&)[_Nm]) noexcept {
return false;
}
/**
* @brief Return whether an initializer_list is empty.
* @param __il Initializer list.
*/
template <typename _Tp>
[[nodiscard]] constexpr bool empty(initializer_list<_Tp> __il) noexcept {
return __il.size() == 0;
}
struct monostate {};
} // namespace std
#else
#include <variant>
#endif
#line 12 "src/algebra/system/operation.hpp"
namespace workspace {
// Unary `+`
template <class _Tp>
using require_unary_plus = std::enable_if_t<
std::is_convertible<decltype(+std::declval<const _Tp &>()), _Tp>::value>;
template <class _Tp, class = void> struct has_unary_plus : std::false_type {};
template <class _Tp>
struct has_unary_plus<_Tp, require_unary_plus<_Tp>> : std::true_type {};
// Unary `-`
template <class _Tp>
using require_unary_minus = std::enable_if_t<
std::is_convertible<decltype(-std::declval<const _Tp &>()), _Tp>::value>;
template <class _Tp, class = void> struct has_unary_minus : std::false_type {};
template <class _Tp>
struct has_unary_minus<_Tp, require_unary_minus<_Tp>> : std::true_type {};
// Binary `+`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_plus =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() +
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_plus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_plus<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>>
: std::true_type {};
// Binary `-`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_minus =
std::__void_t<decltype(std::declval<const _Tp1 &>() -
std::declval<const _Tp2 &>())>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_minus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_minus<_Tp1, _Tp2, require_binary_minus<_Tp1, _Tp2>>
: std::true_type {};
// Binary `*`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_multiplies =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() *
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_multiplies : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_multiplies<_Tp1, _Tp2, require_binary_multiplies<_Tp1, _Tp2>>
: std::true_type {};
// Binary `/`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_divides =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() /
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_divides : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_divides<_Tp1, _Tp2, require_binary_divides<_Tp1, _Tp2>>
: std::true_type {};
// Binary `%`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_modulus =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() %
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_modulus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_modulus<_Tp1, _Tp2, require_binary_modulus<_Tp1, _Tp2>>
: std::true_type {};
template <class _Tp1, class _Tp2 = _Tp1, class = void, class = void,
class = void, class = void>
struct has_arithmetic : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_arithmetic<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>,
require_binary_minus<_Tp1, _Tp2>,
require_binary_multiplies<_Tp1, _Tp2>,
require_binary_divides<_Tp1, _Tp2>> : std::true_type {};
template <class _Tp1, class _Tp2 = _Tp1>
using require_arithmetic = std::enable_if_t<has_arithmetic<_Tp1, _Tp2>::value>;
// Binary `<`
template <class _Tp, class = void> struct is_comparable : std::false_type {};
template <class _Tp>
struct is_comparable<_Tp, std::__void_t<decltype(std::declval<const _Tp &>() <
std::declval<const _Tp &>())>>
: std::true_type {};
template <class _Tp, bool _Default = false> struct try_less : std::less<_Tp> {
constexpr bool operator()(const _Tp &__x, const _Tp &__y) noexcept {
if _CXX17_CONSTEXPR (is_comparable<_Tp>::value)
return std::less<_Tp>::operator()(__x, __y);
else
return _Default;
}
};
} // namespace workspace
#line 2 "src/utils/sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#include <cstdint>
#line 11 "src/utils/sfinae.hpp"
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
std::declval<Container&>()))>::type;
template <class _Tp, class = void> struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<
_Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
: std::true_type {
using type = decltype(std::begin(std::declval<const _Tp&>()));
};
template <class _Tp, class = void> struct has_size : std::false_type {};
template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
: std::true_type {};
template <class _Tp, class = void> struct has_resize : std::false_type {};
template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
std::declval<size_t>()))>> : std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
template <class> struct first_arg { using type = void; };
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};
template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _Container, class = void> struct get_dimension {
static constexpr size_t value = 0;
};
template <class _Container>
struct get_dimension<_Container,
std::enable_if_t<has_begin<_Container>::value>> {
static constexpr size_t value =
1 + get_dimension<typename std::iterator_traits<
typename has_begin<_Container>::type>::value_type>::value;
};
} // namespace workspace
#line 2 "src/data_structure/segment_tree/waitings.hpp"
#line 5 "src/data_structure/segment_tree/waitings.hpp"
namespace workspace {
namespace internal {
struct waitings : std::queue<size_t> {
waitings(size_t n) : in(n) {}
bool push(size_t index) {
// assert(index < in.size());
if (in[index]) return false;
emplace(index);
return (in[index] = true);
}
size_t pop() {
// assert(!empty());
auto index = front();
std::queue<size_t>::pop();
in[index] = false;
return index;
}
private:
std::vector<int_least8_t> in;
};
} // namespace internal
} // namespace workspace
#line 16 "src/data_structure/segment_tree/lazy.hpp"
namespace workspace {
template <class _Monoid, class _End,
class Monoid_container = std::vector<_Monoid>,
class Endomorphism_container = std::vector<_End>>
class lazy_segment_tree {
static_assert(
std::is_same<_Monoid, typename Monoid_container::value_type>::value);
static_assert(
std::is_same<_End, typename Endomorphism_container::value_type>::value);
static_assert(has_binary_plus<_Monoid>::value,
"\'_Monoid\' has no proper binary \'operator+\'.");
static_assert(has_binary_multiplies<_End>::value,
"\'_End\' has no proper binary \'operator*\'.");
static_assert(has_binary_multiplies<_Monoid, _End>::value,
"\'_End\' is not applicable to \'_Monoid\'.");
size_t size_orig, height, size_ext;
Monoid_container data;
Endomorphism_container lazy;
internal::waitings wait;
void repair() {
while (!wait.empty()) {
const size_t __i = wait.pop() >> 1;
if (__i && wait.push(__i)) pull(__i);
}
}
void _apply(size_t node, const _End &__e) {
data[node] = data[node] * __e;
if (node < size_ext) lazy[node] = lazy[node] * __e;
}
void push(size_t node) {
_apply(node << 1, lazy[node]);
_apply(node << 1 | 1, lazy[node]);
lazy[node] = _End{};
}
void pull(size_t node) { data[node] = data[node << 1] + data[node << 1 | 1]; }
template <class _Pred>
size_t left_partition_subtree(size_t node, _Monoid mono, _Pred __pred) {
assert(node);
while (node < size_ext) {
push(node);
const _Monoid __tmp = data[(node <<= 1) | 1] + mono;
if (__pred(__tmp))
mono = std::move(__tmp);
else
++node;
}
return ++node -= size_ext;
}
template <class _Pred>
size_t right_partition_subtree(size_t node, _Monoid mono, _Pred __pred) {
assert(node);
while (node < size_ext) {
push(node);
const _Monoid __tmp = mono + data[node <<= 1];
if (__pred(__tmp)) ++node, mono = std::move(__tmp);
}
return (node -= size_ext) < size_orig ? node : size_orig;
}
public:
class iterator {
lazy_segment_tree *__p;
size_t __i;
public:
using difference_type = typename std::make_signed<size_t>::type;
using value_type = _Monoid;
using reference = _Monoid &;
using pointer = iterator;
using iterator_category = std::random_access_iterator_tag;
/**
* @brief Construct a new iterator object
*
*/
iterator() = default;
/**
* @brief Construct a new iterator object
*
* @param __p Pointer to a segment tree object
* @param __i Index
*/
iterator(lazy_segment_tree *__p, size_t __i) : __p(__p), __i(__i) {}
bool operator==(iterator const &rhs) const {
return __p == rhs.__p && __i == rhs.__i;
}
bool operator!=(iterator const &rhs) const { return !operator==(rhs); }
bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }
iterator &operator++() { return ++__i, *this; }
iterator &operator--() { return --__i, *this; }
difference_type operator-(iterator const &rhs) const {
return __i - rhs.__i;
}
/**
* @brief
*
* @return reference
*/
reference operator*() const { return __p->operator[](__i); }
};
using value_type = typename iterator::value_type;
using reference = typename iterator::reference;
iterator begin() { return {this, 0}; }
iterator end() { return {this, size_orig}; }
auto rbegin() { return std::make_reverse_iterator(end()); }
auto rend() { return std::make_reverse_iterator(begin()); }
lazy_segment_tree(size_t __n = 0)
: size_orig{__n},
height(__n > 1 ? 32 - __builtin_clz(__n - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext),
wait(size_ext << 1) {}
lazy_segment_tree(size_t __n, const _Monoid &init) : lazy_segment_tree(__n) {
std::fill_n(std::next(std::begin(data), size_ext), __n, init);
for (size_t i{size_ext}; --i;) pull(i);
}
template <class iter_type, class value_type = typename std::iterator_traits<
iter_type>::value_type>
lazy_segment_tree(iter_type first, iter_type last)
: size_orig(std::distance(first, last)),
height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext),
wait(size_ext << 1) {
static_assert(std::is_constructible<_Monoid, value_type>::value,
"_Monoid(iter_type::value_type) is not constructible.");
for (auto iter{std::next(std::begin(data), size_ext)};
iter != std::end(data) && first != last; ++iter, ++first)
*iter = _Monoid(*first);
for (size_t i{size_ext}; --i;) pull(i);
}
/**
* @return Number of elements.
*/
size_t size() const { return size_orig; }
/**
* @param __i Index of the element
* @return Reference to the element.
*/
_Monoid &operator[](size_t __i) {
assert(__i < size_orig);
__i |= size_ext;
wait.push(__i);
for (size_t i = height; i; --i) push(__i >> i);
return data[__i];
}
void apply(const _End &__e) { apply(0, size_orig, __e); }
void apply(size_t __i, const _End &__e) { apply(__i, __i + 1, __e); }
void apply(size_t first, size_t last, const _End &__e) {
assert(last <= size_orig);
repair();
if (first >= last) return;
first += size_ext, last += size_ext;
--last;
for (size_t i = height; i; --i) push(first >> i), push(last >> i);
++last;
for (size_t l = first, r = last; l != r; l >>= 1, r >>= 1) {
if (l & 1) _apply(l++, __e);
if (r & 1) _apply(--r, __e);
}
for (first >>= __builtin_ffs(first); first; first >>= 1) pull(first);
for (last >>= __builtin_ffs(last); last; last >>= 1) pull(last);
}
/**
* @param first Left end, inclusive
* @param last Right end, exclusive
* @return Sum of elements in the interval.
*/
_Monoid fold(size_t first, size_t last) {
assert(last <= size_orig);
repair();
if (first >= last) return _Monoid{};
first += size_ext, last += size_ext - 1;
_Monoid left_val{}, right_val{};
for (size_t l = first, r = last + 1; l != r; l >>= 1, r >>= 1) {
if (l & 1) left_val = left_val + data[l++];
if (r & 1) right_val = data[--r] + right_val;
left_val = left_val * lazy[first >>= 1];
right_val = right_val * lazy[last >>= 1];
}
while (first >>= 1, last >>= 1) {
left_val = left_val * lazy[first];
right_val = right_val * lazy[last];
}
return left_val + right_val;
}
/**
* @return Sum of all elements.
*/
_Monoid fold() {
repair();
return data[1];
}
/**
* @brief Binary search for the partition point.
* @param __r Right fixed end of the interval, exclusive
* @param __pred Predicate in the form of 'bool(_Monoid)'
* @return Left end of the extremal interval satisfying the condition,
* inclusive.
*/
template <class _Pred> size_t left_partition(size_t __r, _Pred __pred) {
assert(__r <= size_orig);
repair();
__r += size_ext - 1;
for (size_t i{height}; i; --i) push(__r >> i);
++__r;
_Monoid mono{};
for (size_t __l{size_ext}, step{}; __l != __r;
__l >>= 1, __r >>= 1, ++step) {
if ((__l & 1) != (__r & 1)) {
const _Monoid __tmp = data[--__r] + mono;
if (!__pred(__tmp))
return left_partition_subtree(__r, std::move(mono), __pred);
mono = std::move(__tmp);
}
}
return 0;
}
/**
* @brief Binary search for the partition point.
* @param __l Left fixed end of the interval, inclusive
* @param __pred Predicate in the form of 'bool(_Monoid)'
* @return Right end of the extremal interval satisfying the condition,
* exclusive.
*/
template <class _Pred> size_t right_partition(size_t __l, _Pred __pred) {
assert(__l <= size_orig);
repair();
__l += size_ext;
for (size_t i{height}; i; --i) push(__l >> i);
_Monoid mono{};
for (size_t __r{size_ext << 1}, step{}; __l != __r;
__l >>= 1, __r >>= 1, ++step) {
if ((__l & 1) != (__r & 1)) {
const _Monoid __tmp = mono + data[__l];
if (!__pred(__tmp))
return right_partition_subtree(__l, std::move(mono), __pred);
mono = std::move(__tmp);
++__l;
}
}
return size_orig;
}
};
} // namespace workspace