Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub jellc/Library

:heavy_check_mark: Extended Euclidean Algorithm
(src/number_theory/ext_gcd.hpp)

Depends on

Required by

Verified with

Code

#pragma once

/**
 * @file ext_gcd.hpp
 * @brief Extended Euclidean Algorithm
 */

#include <tuple>

#include "src/utils/sfinae.hpp"

namespace workspace {

/**
 * @param __a Integer
 * @param __b Integer
 * @return Pair of integers (x, y) s.t. ax + by = g = gcd(a, b) and (b = 0 or 0
 * <= x < |b/g|) and (a = 0 or -|a/g| < y <= 0). Return (0, 0) if (a, b) = (0,
 * 0).
 */
template <typename _T1, typename _T2>
constexpr auto ext_gcd(_T1 __a, _T2 __b) noexcept {
  static_assert(is_integral_ext<_T1>::value);
  static_assert(is_integral_ext<_T2>::value);

  using value_type = typename std::make_signed<
      typename std::common_type<_T1, _T2>::type>::type;
  using result_type = std::pair<value_type, value_type>;

  value_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1};

  while (b != value_type(0)) {
    auto t = a / b;
    r ^= p ^= r ^= p -= t * r;
    s ^= q ^= s ^= q -= t * s;
    b ^= a ^= b ^= a -= t * b;
  }

  if (a < 0) p = -p, q = -q, a = -a;

  if (p < 0) {
    __a /= a, __b /= a;

    if (__b > 0)
      p += __b, q -= __a;
    else
      p -= __b, q += __a;
  }

  return result_type{p, q};
}

/**
 * @param __a Integer
 * @param __b Integer
 * @param __c Integer
 * @return Pair of integers (x, y) s.t. ax + by = c and (b = 0 or 0 <= x <
 * |b/g|). Return (0, 0) if there is no solution.
 */
template <typename _T1, typename _T2, typename _T3>
constexpr auto ext_gcd(_T1 __a, _T2 __b, _T3 __c) noexcept {
  static_assert(is_integral_ext<_T1>::value);
  static_assert(is_integral_ext<_T2>::value);
  static_assert(is_integral_ext<_T3>::value);

  using value_type = typename std::make_signed<
      typename std::common_type<_T1, _T2, _T3>::type>::type;
  using result_type = std::pair<value_type, value_type>;

  value_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1};

  while (b != value_type(0)) {
    auto t = a / b;
    r ^= p ^= r ^= p -= t * r;
    s ^= q ^= s ^= q -= t * s;
    b ^= a ^= b ^= a -= t * b;
  }

  if (__c % a) return result_type{};

  __a /= a, __b /= a, __c /= a;
  p *= __c, q *= __c;

  if (__b != value_type(0)) {
    auto t = p / __b;
    p -= __b * t;
    q += __a * t;

    if (p < 0) {
      if (__b > 0)
        p += __b, q -= __a;
      else
        p -= __b, q += __a;
    }
  }

  return result_type{p, q};
}

}  // namespace workspace
#line 2 "src/number_theory/ext_gcd.hpp"

/**
 * @file ext_gcd.hpp
 * @brief Extended Euclidean Algorithm
 */

#include <tuple>

#line 2 "src/utils/sfinae.hpp"

/**
 * @file sfinae.hpp
 * @brief SFINAE
 */

#include <cstdint>
#include <iterator>
#include <type_traits>

#ifndef __INT128_DEFINED__

#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif

#endif

namespace std {

#if __INT128_DEFINED__

template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };

template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };

template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};

template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};

#endif

}  // namespace std

namespace workspace {

template <class Tp, class... Args> struct variadic_front { using type = Tp; };

template <class... Args> struct variadic_back;

template <class Tp> struct variadic_back<Tp> { using type = Tp; };

template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
  using type = typename variadic_back<Args...>::type;
};

template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;

/**
 * @brief Return type of subscripting ( @c [] ) access.
 */
template <class _Tp>
using subscripted_type =
    typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;

template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
    std::declval<Container&>()))>::type;

template <class _Tp, class = void> struct has_begin : std::false_type {};

template <class _Tp>
struct has_begin<
    _Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
    : std::true_type {
  using type = decltype(std::begin(std::declval<const _Tp&>()));
};

template <class _Tp, class = void> struct has_size : std::false_type {};

template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
    : std::true_type {};

template <class _Tp, class = void> struct has_resize : std::false_type {};

template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
                           std::declval<size_t>()))>> : std::true_type {};

template <class _Tp, class = void> struct has_mod : std::false_type {};

template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};

template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
    _Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
    : std::true_type {};

#if __INT128_DEFINED__

template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};

#endif

#if __cplusplus >= 201402

template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;

#endif

template <typename _Tp, typename = void> struct multiplicable_uint {
  using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
    _Tp,
    typename std::enable_if<(2 < sizeof(_Tp)) &&
                            (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
  using type = uint_least64_t;
};

#if __INT128_DEFINED__

template <typename _Tp>
struct multiplicable_uint<_Tp,
                          typename std::enable_if<(4 < sizeof(_Tp))>::type> {
  using type = __uint128_t;
};

#endif

template <typename _Tp> struct multiplicable_int {
  using type =
      typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};

template <typename _Tp> struct multiplicable {
  using type = std::conditional_t<
      is_integral_ext<_Tp>::value,
      std::conditional_t<std::is_signed<_Tp>::value,
                         typename multiplicable_int<_Tp>::type,
                         typename multiplicable_uint<_Tp>::type>,
      _Tp>;
};

template <class> struct first_arg { using type = void; };

template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
  using type = _Tp;
};

template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};

template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
    : first_arg<decltype(&_Tp::operator())> {};

template <class _Container, class = void> struct get_dimension {
  static constexpr size_t value = 0;
};

template <class _Container>
struct get_dimension<_Container,
                     std::enable_if_t<has_begin<_Container>::value>> {
  static constexpr size_t value =
      1 + get_dimension<typename std::iterator_traits<
              typename has_begin<_Container>::type>::value_type>::value;
};

}  // namespace workspace
#line 11 "src/number_theory/ext_gcd.hpp"

namespace workspace {

/**
 * @param __a Integer
 * @param __b Integer
 * @return Pair of integers (x, y) s.t. ax + by = g = gcd(a, b) and (b = 0 or 0
 * <= x < |b/g|) and (a = 0 or -|a/g| < y <= 0). Return (0, 0) if (a, b) = (0,
 * 0).
 */
template <typename _T1, typename _T2>
constexpr auto ext_gcd(_T1 __a, _T2 __b) noexcept {
  static_assert(is_integral_ext<_T1>::value);
  static_assert(is_integral_ext<_T2>::value);

  using value_type = typename std::make_signed<
      typename std::common_type<_T1, _T2>::type>::type;
  using result_type = std::pair<value_type, value_type>;

  value_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1};

  while (b != value_type(0)) {
    auto t = a / b;
    r ^= p ^= r ^= p -= t * r;
    s ^= q ^= s ^= q -= t * s;
    b ^= a ^= b ^= a -= t * b;
  }

  if (a < 0) p = -p, q = -q, a = -a;

  if (p < 0) {
    __a /= a, __b /= a;

    if (__b > 0)
      p += __b, q -= __a;
    else
      p -= __b, q += __a;
  }

  return result_type{p, q};
}

/**
 * @param __a Integer
 * @param __b Integer
 * @param __c Integer
 * @return Pair of integers (x, y) s.t. ax + by = c and (b = 0 or 0 <= x <
 * |b/g|). Return (0, 0) if there is no solution.
 */
template <typename _T1, typename _T2, typename _T3>
constexpr auto ext_gcd(_T1 __a, _T2 __b, _T3 __c) noexcept {
  static_assert(is_integral_ext<_T1>::value);
  static_assert(is_integral_ext<_T2>::value);
  static_assert(is_integral_ext<_T3>::value);

  using value_type = typename std::make_signed<
      typename std::common_type<_T1, _T2, _T3>::type>::type;
  using result_type = std::pair<value_type, value_type>;

  value_type a{__a}, b{__b}, p{1}, q{}, r{}, s{1};

  while (b != value_type(0)) {
    auto t = a / b;
    r ^= p ^= r ^= p -= t * r;
    s ^= q ^= s ^= q -= t * s;
    b ^= a ^= b ^= a -= t * b;
  }

  if (__c % a) return result_type{};

  __a /= a, __b /= a, __c /= a;
  p *= __c, q *= __c;

  if (__b != value_type(0)) {
    auto t = p / __b;
    p -= __b * t;
    q += __a * t;

    if (p < 0) {
      if (__b > 0)
        p += __b, q -= __a;
      else
        p -= __b, q += __a;
    }
  }

  return result_type{p, q};
}

}  // namespace workspace
Back to top page