Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub jellc/Library

:warning: Golden Section
(src/opt/golden_section.hpp)

Depends on

Code

#pragma once

/**
 * @file golden_section.hpp
 * @brief Golden Section
 */

#include <type_traits>

#include "src/algebra/system/operation.hpp"

namespace workspace {

/**
 * @brief Golden section search.
 */
template <class _Iterator, class _Function>
std::enable_if_t<has_binary_minus<_Iterator>::value, _Iterator> golden_section(
    _Iterator __first, _Iterator __last, _Function&& __f) {
  if (__last - __first < 2) return __first;

  decltype(__last - __first) __a{1}, __b{2};
  while (__a + __b <= __last - __first) std::swap(__a += __b, __b);

  auto __f1 = __f(__last - __b), __f2 = __f(__last - __a);

  while (__a != 1) {
    std::swap(__a, __b -= __a);

    if (__f2 < __f1)
      __f1 = __f2, __f2 = __f(__last - __a);

    else if ((__last -= __b) - __first < __b)
      std::swap(__a, __b -= __a), __f2 = __f(__last - __a);

    else
      __f2 = __f1, __f1 = __f(__last - __b);
  }

  return __f1 < __f2 ? __last - __b : __last - __a;
}

}  // namespace workspace
#line 2 "src/opt/golden_section.hpp"

/**
 * @file golden_section.hpp
 * @brief Golden Section
 */

#include <type_traits>

#line 2 "src/algebra/system/operation.hpp"

/**
 * @file operation.hpp
 * @brief Operation Traits
 */

#include <functional>
#line 10 "src/algebra/system/operation.hpp"

#line 2 "lib/cxx17"

#line 2 "lib/cxx14"

#ifndef _CXX14_CONSTEXPR
#if __cplusplus >= 201402L
#define _CXX14_CONSTEXPR constexpr
#else
#define _CXX14_CONSTEXPR
#endif
#endif
#line 4 "lib/cxx17"

#ifndef _CXX17_CONSTEXPR
#if __cplusplus >= 201703L
#define _CXX17_CONSTEXPR constexpr
#else
#define _CXX17_CONSTEXPR
#endif
#endif

#ifndef _CXX17_STATIC_ASSERT
#if __cplusplus >= 201703L
#define _CXX17_STATIC_ASSERT static_assert
#else
#define _CXX17_STATIC_ASSERT assert
#endif
#endif

#include <iterator>

#if __cplusplus < 201703L

namespace std {

/**
 *  @brief  Return the size of a container.
 *  @param  __cont  Container.
 */
template <typename _Container>
constexpr auto size(const _Container& __cont) noexcept(noexcept(__cont.size()))
    -> decltype(__cont.size()) {
  return __cont.size();
}

/**
 *  @brief  Return the size of an array.
 */
template <typename _Tp, size_t _Nm>
constexpr size_t size(const _Tp (&)[_Nm]) noexcept {
  return _Nm;
}

/**
 *  @brief  Return whether a container is empty.
 *  @param  __cont  Container.
 */
template <typename _Container>
[[nodiscard]] constexpr auto empty(const _Container& __cont) noexcept(
    noexcept(__cont.empty())) -> decltype(__cont.empty()) {
  return __cont.empty();
}

/**
 *  @brief  Return whether an array is empty (always false).
 */
template <typename _Tp, size_t _Nm>
[[nodiscard]] constexpr bool empty(const _Tp (&)[_Nm]) noexcept {
  return false;
}

/**
 *  @brief  Return whether an initializer_list is empty.
 *  @param  __il  Initializer list.
 */
template <typename _Tp>
[[nodiscard]] constexpr bool empty(initializer_list<_Tp> __il) noexcept {
  return __il.size() == 0;
}

struct monostate {};

}  // namespace std

#else

#include <variant>

#endif
#line 12 "src/algebra/system/operation.hpp"

namespace workspace {

// Unary `+`
template <class _Tp>
using require_unary_plus = std::enable_if_t<
    std::is_convertible<decltype(+std::declval<const _Tp &>()), _Tp>::value>;

template <class _Tp, class = void> struct has_unary_plus : std::false_type {};

template <class _Tp>
struct has_unary_plus<_Tp, require_unary_plus<_Tp>> : std::true_type {};

// Unary `-`
template <class _Tp>
using require_unary_minus = std::enable_if_t<
    std::is_convertible<decltype(-std::declval<const _Tp &>()), _Tp>::value>;

template <class _Tp, class = void> struct has_unary_minus : std::false_type {};

template <class _Tp>
struct has_unary_minus<_Tp, require_unary_minus<_Tp>> : std::true_type {};

// Binary `+`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_plus =
    std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() +
                                                  std::declval<const _Tp2 &>()),
                                         _Tp1>::value>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_plus : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_plus<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>>
    : std::true_type {};

// Binary `-`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_minus =
    std::__void_t<decltype(std::declval<const _Tp1 &>() -
                           std::declval<const _Tp2 &>())>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_minus : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_minus<_Tp1, _Tp2, require_binary_minus<_Tp1, _Tp2>>
    : std::true_type {};

// Binary `*`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_multiplies =
    std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() *
                                                  std::declval<const _Tp2 &>()),
                                         _Tp1>::value>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_multiplies : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_multiplies<_Tp1, _Tp2, require_binary_multiplies<_Tp1, _Tp2>>
    : std::true_type {};

// Binary `/`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_divides =
    std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() /
                                                  std::declval<const _Tp2 &>()),
                                         _Tp1>::value>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_divides : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_divides<_Tp1, _Tp2, require_binary_divides<_Tp1, _Tp2>>
    : std::true_type {};

// Binary `%`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_modulus =
    std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() %
                                                  std::declval<const _Tp2 &>()),
                                         _Tp1>::value>;

template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_modulus : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_binary_modulus<_Tp1, _Tp2, require_binary_modulus<_Tp1, _Tp2>>
    : std::true_type {};

template <class _Tp1, class _Tp2 = _Tp1, class = void, class = void,
          class = void, class = void>
struct has_arithmetic : std::false_type {};

template <class _Tp1, class _Tp2>
struct has_arithmetic<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>,
                      require_binary_minus<_Tp1, _Tp2>,
                      require_binary_multiplies<_Tp1, _Tp2>,
                      require_binary_divides<_Tp1, _Tp2>> : std::true_type {};

template <class _Tp1, class _Tp2 = _Tp1>
using require_arithmetic = std::enable_if_t<has_arithmetic<_Tp1, _Tp2>::value>;

// Binary `<`
template <class _Tp, class = void> struct is_comparable : std::false_type {};

template <class _Tp>
struct is_comparable<_Tp, std::__void_t<decltype(std::declval<const _Tp &>() <
                                                 std::declval<const _Tp &>())>>
    : std::true_type {};

template <class _Tp, bool _Default = false> struct try_less : std::less<_Tp> {
  constexpr bool operator()(const _Tp &__x, const _Tp &__y) noexcept {
    if _CXX17_CONSTEXPR (is_comparable<_Tp>::value)
      return std::less<_Tp>::operator()(__x, __y);
    else
      return _Default;
  }
};

}  // namespace workspace
#line 11 "src/opt/golden_section.hpp"

namespace workspace {

/**
 * @brief Golden section search.
 */
template <class _Iterator, class _Function>
std::enable_if_t<has_binary_minus<_Iterator>::value, _Iterator> golden_section(
    _Iterator __first, _Iterator __last, _Function&& __f) {
  if (__last - __first < 2) return __first;

  decltype(__last - __first) __a{1}, __b{2};
  while (__a + __b <= __last - __first) std::swap(__a += __b, __b);

  auto __f1 = __f(__last - __b), __f2 = __f(__last - __a);

  while (__a != 1) {
    std::swap(__a, __b -= __a);

    if (__f2 < __f1)
      __f1 = __f2, __f2 = __f(__last - __a);

    else if ((__last -= __b) - __first < __b)
      std::swap(__a, __b -= __a), __f2 = __f(__last - __a);

    else
      __f2 = __f1, __f1 = __f(__last - __b);
  }

  return __f1 < __f2 ? __last - __b : __last - __a;
}

}  // namespace workspace
Back to top page