This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/string/rolling_hash.hpp"
#pragma once
/**
* @file rolling_hash.hpp
* @brief Rolling Hash
*/
#include <algorithm>
#include <cassert>
#include <vector>
#include "src/opt/binary_search.hpp"
#include "src/utils/rand/rng.hpp"
#include "src/utils/sfinae.hpp"
namespace workspace {
/**
* @struct rolling_hashed
* @brief hash data of a string.
*/
struct rolling_hashed {
using u64 = uint_least64_t;
using u128 = __uint128_t;
/**
* @brief modulus used for hashing.
*/
constexpr static u64 mod = (1ull << 61) - 1;
const static u64 base;
/**
* @brief hash value.
*/
u64 value = 0;
/**
* @brief length of the string.
*/
size_t length = 0;
rolling_hashed() = default;
/**
* @brief construct hash data from one character.
* @param c a character
*/
template <class char_type, typename std::enable_if<std::is_convertible<
char_type, u64>::value>::type * = nullptr>
rolling_hashed(char_type c) : value(u64(c) + 1), length(1) {}
rolling_hashed(u64 value, size_t length) : value(value), length(length) {}
operator std::pair<u64, size_t>() const { return {value, length}; }
operator u64() const { return value; }
/**
* @return whether or not (*this) and (rhs) are equal
* @param rhs
*/
bool operator==(const rolling_hashed &rhs) const {
return value == rhs.value && length == rhs.length;
}
/**
* @return whether or not (*this) and (rhs) are distinct
* @param rhs
*/
bool operator!=(const rolling_hashed &rhs) const { return !operator==(rhs); }
/**
* @param rhs the right operand
* @return hash data of concatenated string
*/
rolling_hashed operator+(const rolling_hashed &rhs) const {
return {plus(value, mult(rhs.value, base_pow(length))),
length + rhs.length};
}
/**
* @param rhs appended to right end
* @return reference to updated hash data
*/
rolling_hashed operator+=(const rolling_hashed &rhs) {
return *this = operator+(rhs);
}
/**
* @param rhs the erased suffix
* @return hash data of erased string
*/
rolling_hashed operator-(const rolling_hashed &rhs) const {
assert(!(length < rhs.length));
return {minus(value, mult(rhs.value, base_pow(length - rhs.length))),
length - rhs.length};
}
/**
* @param rhs erased from right end
* @return reference to updated hash data
*/
rolling_hashed operator-=(const rolling_hashed &rhs) {
return *this = operator-(rhs);
}
/**
* @fn base_pow
* @param exp the exponent
* @return base ** pow
*/
static u64 base_pow(size_t exp) {
static std::vector<u64> pow{1};
while (pow.size() <= exp) {
pow.emplace_back(mult(pow.back(), base));
}
return pow[exp];
}
private:
static u64 plus(u64 lhs, u64 rhs) {
return (lhs += rhs) < mod ? lhs : lhs - mod;
}
static u64 minus(u64 lhs, u64 rhs) {
return (lhs -= rhs) < mod ? lhs : lhs + mod;
}
static u64 mult(u128 lhs, u64 rhs) {
lhs *= rhs;
lhs = (lhs >> 61) + (lhs & mod);
return lhs < mod ? lhs : lhs - mod;
}
};
/**
* @brief base used for hashing
*/
const rolling_hashed::u64 rolling_hashed::base =
random_number_generator<u64>(1 << 30, mod - 1)();
/**
* @struct rolling_hash_table
* @brief make hash data table of suffix.
*/
template <class str_type> struct rolling_hash_table {
constexpr static size_t npos = -1;
rolling_hash_table() = default;
rolling_hash_table(str_type str) {
std::reverse(std::begin(str), std::end(str));
for (auto &&c : str) suffix.emplace_back(rolling_hashed{c} + suffix.back());
std::reverse(suffix.begin(), suffix.end());
}
template <class Tp, typename = typename std::enable_if<
std::is_convertible<rolling_hashed, Tp>::value>::type>
operator Tp() const {
return substr();
}
operator rolling_hashed() const { return substr(); }
/**
* @return length of the string
*/
size_t size() const { return suffix.size() - 1; }
/**
* @param pos start position
* @param n length of the substring
* @return hash data of the substring
*/
rolling_hashed substr(size_t pos = 0, size_t n = npos) const {
assert(!(size() < pos));
return suffix[pos] - suffix[pos + std::min(n, size() - pos)];
}
/**
* @param rhs
* @return length of the longest common prefix
*/
size_t lcp(rolling_hash_table const &rhs) const {
auto n = std::min(size(), rhs.size());
return binary_search<size_t>(
0, n + 1, [&](size_t l) { return substr(0, l) == rhs.substr(0, l); });
}
private:
std::vector<rolling_hashed> suffix{{}};
};
} // namespace workspace
#line 2 "src/string/rolling_hash.hpp"
/**
* @file rolling_hash.hpp
* @brief Rolling Hash
*/
#include <algorithm>
#include <cassert>
#include <vector>
#line 2 "src/opt/binary_search.hpp"
/*
* @file binary_search.hpp
* @brief Binary Search
*/
#line 9 "src/opt/binary_search.hpp"
#include <limits>
#include <tuple>
#line 12 "src/opt/binary_search.hpp"
namespace workspace {
/*
* @fn binary_search
* @brief binary search on a discrete range.
* @param ok pred(ok) is true
* @param ng pred(ng) is false
* @param pred the predicate
* @return the closest point to (ng) where pred is true
*/
template <class Iter, class Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Pred>()(std::declval<Iter>())),
bool>::value,
Iter>::type
binary_search(Iter ok, Iter ng, Pred pred) {
assert(ok != ng);
typename std::make_signed<decltype(ng - ok)>::type dist(ng - ok);
while (1 < dist || dist < -1) {
const Iter mid(ok + dist / 2);
if (pred(mid))
ok = mid, dist -= dist / 2;
else
ng = mid, dist /= 2;
}
return ok;
}
/*
* @fn binary_search
* @brief binary search on the real number line.
* @param ok pred(ok) is true
* @param ng pred(ng) is false
* @param eps the error tolerance
* @param pred the predicate
* @return the boundary point
*/
template <class Real, class Pred>
typename std::enable_if<
std::is_convertible<decltype(std::declval<Pred>()(std::declval<Real>())),
bool>::value,
Real>::type
binary_search(Real ok, Real ng, const Real eps, Pred pred) {
assert(ok != ng);
for (auto loops = 0; loops != std::numeric_limits<Real>::digits &&
(ok + eps < ng || ng + eps < ok);
++loops) {
const Real mid{(ok + ng) / 2};
(pred(mid) ? ok : ng) = mid;
}
return ok;
}
/*
* @fn parallel_binary_search
* @brief parallel binary search on discrete ranges.
* @param ends a vector of pairs; pred(first) is true, pred(second) is false
* @param pred the predicate
* @return the closest points to (second) where pred is true
*/
template <class Array,
class Iter = typename std::decay<
decltype(std::get<0>(std::declval<Array>()[0]))>::type,
class Pred>
typename std::enable_if<
std::is_convertible<
decltype(std::declval<Pred>()(std::declval<std::vector<Iter>>())[0]),
bool>::value,
std::vector<Iter>>::type
parallel_binary_search(Array ends, Pred pred) {
std::vector<Iter> mids(std::size(ends));
for (;;) {
bool all_found = true;
for (size_t i{}; i != std::size(ends); ++i) {
const Iter &ok = std::get<0>(ends[i]);
const Iter &ng = std::get<1>(ends[i]);
const Iter mid(
ok + typename std::make_signed<decltype(ng - ok)>::type(ng - ok) / 2);
if (mids[i] != mid) {
all_found = false;
mids[i] = mid;
}
}
if (all_found) break;
const auto res = pred(mids);
for (size_t i{}; i != std::size(ends); ++i) {
(res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
}
}
return mids;
}
/*
* @fn parallel_binary_search
* @brief parallel binary search on the real number line.
* @param ends a vector of pairs; pred(first) is true, pred(second) is false
* @param eps the error tolerance
* @param pred the predicate
* @return the boundary points
*/
template <class Array,
class Real = typename std::decay<
decltype(std::get<0>(std::declval<Array>()[0]))>::type,
class Pred>
typename std::enable_if<
std::is_convertible<
decltype(std::declval<Pred>()(std::declval<std::vector<Real>>())[0]),
bool>::value,
std::vector<Real>>::type
parallel_binary_search(Array ends, const Real eps, Pred pred) {
std::vector<Real> mids(std::size(ends));
for (auto loops = 0; loops != std::numeric_limits<Real>::digits; ++loops) {
bool all_found = true;
for (size_t i{}; i != std::size(ends); ++i) {
const Real ok = std::get<0>(ends[i]);
const Real ng = std::get<1>(ends[i]);
if (ok + eps < ng || ng + eps < ok) {
all_found = false;
mids[i] = (ok + ng) / 2;
}
}
if (all_found) break;
const auto res = pred(mids);
for (size_t i{}; i != std::size(ends); ++i) {
(res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
}
}
return mids;
}
} // namespace workspace
#line 2 "src/utils/rand/rng.hpp"
/**
* @file rng.hpp
* @brief Random Number Generator
*/
#include <random>
namespace workspace {
template <typename _Arithmetic>
using uniform_distribution = typename std::conditional<
std::is_integral<_Arithmetic>::value,
std::uniform_int_distribution<_Arithmetic>,
std::uniform_real_distribution<_Arithmetic>>::type;
template <typename _Arithmetic, class _Engine = std::mt19937>
class random_number_generator : uniform_distribution<_Arithmetic> {
using base = uniform_distribution<_Arithmetic>;
_Engine __engine;
public:
random_number_generator(_Arithmetic __min, _Arithmetic __max)
: base(__min, __max), __engine(std::random_device{}()) {}
random_number_generator(_Arithmetic __max = 1)
: random_number_generator(0, __max) {}
random_number_generator(typename base::param_type const& __param)
: base(__param), __engine(std::random_device{}()) {}
decltype(auto) operator()() noexcept { return base::operator()(__engine); }
};
} // namespace workspace
#line 2 "src/utils/sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#include <cstdint>
#include <iterator>
#include <type_traits>
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
std::declval<Container&>()))>::type;
template <class _Tp, class = void> struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<
_Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
: std::true_type {
using type = decltype(std::begin(std::declval<const _Tp&>()));
};
template <class _Tp, class = void> struct has_size : std::false_type {};
template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
: std::true_type {};
template <class _Tp, class = void> struct has_resize : std::false_type {};
template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
std::declval<size_t>()))>> : std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
template <class> struct first_arg { using type = void; };
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};
template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _Container, class = void> struct get_dimension {
static constexpr size_t value = 0;
};
template <class _Container>
struct get_dimension<_Container,
std::enable_if_t<has_begin<_Container>::value>> {
static constexpr size_t value =
1 + get_dimension<typename std::iterator_traits<
typename has_begin<_Container>::type>::value_type>::value;
};
} // namespace workspace
#line 15 "src/string/rolling_hash.hpp"
namespace workspace {
/**
* @struct rolling_hashed
* @brief hash data of a string.
*/
struct rolling_hashed {
using u64 = uint_least64_t;
using u128 = __uint128_t;
/**
* @brief modulus used for hashing.
*/
constexpr static u64 mod = (1ull << 61) - 1;
const static u64 base;
/**
* @brief hash value.
*/
u64 value = 0;
/**
* @brief length of the string.
*/
size_t length = 0;
rolling_hashed() = default;
/**
* @brief construct hash data from one character.
* @param c a character
*/
template <class char_type, typename std::enable_if<std::is_convertible<
char_type, u64>::value>::type * = nullptr>
rolling_hashed(char_type c) : value(u64(c) + 1), length(1) {}
rolling_hashed(u64 value, size_t length) : value(value), length(length) {}
operator std::pair<u64, size_t>() const { return {value, length}; }
operator u64() const { return value; }
/**
* @return whether or not (*this) and (rhs) are equal
* @param rhs
*/
bool operator==(const rolling_hashed &rhs) const {
return value == rhs.value && length == rhs.length;
}
/**
* @return whether or not (*this) and (rhs) are distinct
* @param rhs
*/
bool operator!=(const rolling_hashed &rhs) const { return !operator==(rhs); }
/**
* @param rhs the right operand
* @return hash data of concatenated string
*/
rolling_hashed operator+(const rolling_hashed &rhs) const {
return {plus(value, mult(rhs.value, base_pow(length))),
length + rhs.length};
}
/**
* @param rhs appended to right end
* @return reference to updated hash data
*/
rolling_hashed operator+=(const rolling_hashed &rhs) {
return *this = operator+(rhs);
}
/**
* @param rhs the erased suffix
* @return hash data of erased string
*/
rolling_hashed operator-(const rolling_hashed &rhs) const {
assert(!(length < rhs.length));
return {minus(value, mult(rhs.value, base_pow(length - rhs.length))),
length - rhs.length};
}
/**
* @param rhs erased from right end
* @return reference to updated hash data
*/
rolling_hashed operator-=(const rolling_hashed &rhs) {
return *this = operator-(rhs);
}
/**
* @fn base_pow
* @param exp the exponent
* @return base ** pow
*/
static u64 base_pow(size_t exp) {
static std::vector<u64> pow{1};
while (pow.size() <= exp) {
pow.emplace_back(mult(pow.back(), base));
}
return pow[exp];
}
private:
static u64 plus(u64 lhs, u64 rhs) {
return (lhs += rhs) < mod ? lhs : lhs - mod;
}
static u64 minus(u64 lhs, u64 rhs) {
return (lhs -= rhs) < mod ? lhs : lhs + mod;
}
static u64 mult(u128 lhs, u64 rhs) {
lhs *= rhs;
lhs = (lhs >> 61) + (lhs & mod);
return lhs < mod ? lhs : lhs - mod;
}
};
/**
* @brief base used for hashing
*/
const rolling_hashed::u64 rolling_hashed::base =
random_number_generator<u64>(1 << 30, mod - 1)();
/**
* @struct rolling_hash_table
* @brief make hash data table of suffix.
*/
template <class str_type> struct rolling_hash_table {
constexpr static size_t npos = -1;
rolling_hash_table() = default;
rolling_hash_table(str_type str) {
std::reverse(std::begin(str), std::end(str));
for (auto &&c : str) suffix.emplace_back(rolling_hashed{c} + suffix.back());
std::reverse(suffix.begin(), suffix.end());
}
template <class Tp, typename = typename std::enable_if<
std::is_convertible<rolling_hashed, Tp>::value>::type>
operator Tp() const {
return substr();
}
operator rolling_hashed() const { return substr(); }
/**
* @return length of the string
*/
size_t size() const { return suffix.size() - 1; }
/**
* @param pos start position
* @param n length of the substring
* @return hash data of the substring
*/
rolling_hashed substr(size_t pos = 0, size_t n = npos) const {
assert(!(size() < pos));
return suffix[pos] - suffix[pos + std::min(n, size() - pos)];
}
/**
* @param rhs
* @return length of the longest common prefix
*/
size_t lcp(rolling_hash_table const &rhs) const {
auto n = std::min(size(), rhs.size());
return binary_search<size_t>(
0, n + 1, [&](size_t l) { return substr(0, l) == rhs.substr(0, l); });
}
private:
std::vector<rolling_hashed> suffix{{}};
};
} // namespace workspace