This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/string/suffix_array.hpp"
#pragma once
/*
* @file suffix_array.hpp
* @brief Suffix Array
*/
#include <algorithm>
#include <numeric>
#include <vector>
#include "../utils/sfinae.hpp"
namespace workspace {
/*
* @class suffix_array
* @brief construct SA and LCP array.
* @tparam str_type the type of string
*/
template <class str_type> class suffix_array {
str_type str;
std::vector<size_t> sa, rank, lcp;
void construct_sa() {
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(),
[&](size_t i, size_t j) { return str[i] < str[j]; });
for (size_t r{1}, c{}, *ptr{&sa.front()}, *tmp{ptr}; c != size();
++r, ptr = tmp)
while (c != size() && str[*ptr] == str[*tmp]) ++c, rank[*tmp++] = r;
for (size_t k{1}; k < size(); k <<= 1) {
auto comp = [&](size_t i, size_t j) -> bool {
if (rank[i] != rank[j]) return rank[i] < rank[j];
return (i + k < size() ? rank[i + k] : 0) <
(j + k < size() ? rank[j + k] : 0);
};
std::sort(sa.begin(), sa.end(), comp);
std::vector<size_t> next_rank(size());
for (size_t r{1}, c{}, *ptr{&sa.front()}, *tmp{ptr}; c != size();
++r, ptr = tmp)
while (c != size() && !comp(*ptr, *tmp)) ++c, next_rank[*tmp++] = r;
rank.swap(next_rank);
}
sa.emplace(sa.begin(), size());
rank.emplace_back(0);
}
void construct_lcp() {
for (size_t i{}, h{}; i != size(); ++i, h = h ? h - 1 : 0) {
for (size_t j{sa[rank[i] - 1] + h}; i + h != size() && j != size();
++j, ++h)
if (str[i + h] != str[j]) break;
lcp[rank[i] - 1] = h;
}
}
public:
static constexpr size_t npos = -1;
using char_type = element_type<str_type>;
std::vector<size_t>::const_iterator begin() const { return sa.begin() + 1; }
std::vector<size_t>::const_iterator end() const { return sa.end(); }
/*
* @fn operator[]
* @brief find the i-th suffix
* @param i the rank
* @return index of the suffix
*/
size_t operator[](size_t i) const { return sa[i + 1]; }
/*
* @fn size
* @return length of the string
*/
size_t size() const { return std::size(str); }
template <class type = str_type, typename = typename type::value_type>
suffix_array(const str_type &_str)
: str(_str), sa(size()), rank(size()), lcp(size()) {
construct_sa();
construct_lcp();
}
template <class type = str_type, std::enable_if_t<std::is_array<type>::value,
std::nullptr_t> = nullptr>
suffix_array(const str_type &_str) : sa(size()), rank(size()), lcp(size()) {
std::copy(std::begin(_str), std::end(_str), str);
construct_sa();
construct_lcp();
}
/*
* @fn find
* @brief find (key) as a substring
* @param key
* @return index if found, npos if not found
*/
size_t find(const str_type &key) const {
using std::begin;
using std::end;
size_t lower{npos}, upper{size()};
while (upper - lower > 1) {
size_t mid = (lower + upper) >> 1;
bool less = false;
for (auto i{begin(str) + sa[mid]}, j{begin(key)}; j != end(key);
++i, ++j) {
if (i == end(str) || *i < *j) {
less = true;
break;
}
if (*i > *j) break;
}
(less ? lower : upper) = mid;
}
if (upper == size()) return npos;
for (auto i{begin(str) + sa[upper]}, j{begin(key)}; j != end(key); ++i, ++j)
if (i == end(str) || *i != *j) return npos;
return sa[upper];
}
/*
* @return lengths of LCP of each adjacent pairs in the suffix
* array
*/
const std::vector<size_t> &lcp_array() const { return lcp; }
};
} // namespace workspace
#line 2 "src/string/suffix_array.hpp"
/*
* @file suffix_array.hpp
* @brief Suffix Array
*/
#include <algorithm>
#include <numeric>
#include <vector>
#line 2 "src/utils/sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#include <cstdint>
#include <iterator>
#include <type_traits>
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
std::declval<Container&>()))>::type;
template <class _Tp, class = void> struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<
_Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
: std::true_type {
using type = decltype(std::begin(std::declval<const _Tp&>()));
};
template <class _Tp, class = void> struct has_size : std::false_type {};
template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
: std::true_type {};
template <class _Tp, class = void> struct has_resize : std::false_type {};
template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
std::declval<size_t>()))>> : std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
template <class> struct first_arg { using type = void; };
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};
template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _Container, class = void> struct get_dimension {
static constexpr size_t value = 0;
};
template <class _Container>
struct get_dimension<_Container,
std::enable_if_t<has_begin<_Container>::value>> {
static constexpr size_t value =
1 + get_dimension<typename std::iterator_traits<
typename has_begin<_Container>::type>::value_type>::value;
};
} // namespace workspace
#line 13 "src/string/suffix_array.hpp"
namespace workspace {
/*
* @class suffix_array
* @brief construct SA and LCP array.
* @tparam str_type the type of string
*/
template <class str_type> class suffix_array {
str_type str;
std::vector<size_t> sa, rank, lcp;
void construct_sa() {
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(),
[&](size_t i, size_t j) { return str[i] < str[j]; });
for (size_t r{1}, c{}, *ptr{&sa.front()}, *tmp{ptr}; c != size();
++r, ptr = tmp)
while (c != size() && str[*ptr] == str[*tmp]) ++c, rank[*tmp++] = r;
for (size_t k{1}; k < size(); k <<= 1) {
auto comp = [&](size_t i, size_t j) -> bool {
if (rank[i] != rank[j]) return rank[i] < rank[j];
return (i + k < size() ? rank[i + k] : 0) <
(j + k < size() ? rank[j + k] : 0);
};
std::sort(sa.begin(), sa.end(), comp);
std::vector<size_t> next_rank(size());
for (size_t r{1}, c{}, *ptr{&sa.front()}, *tmp{ptr}; c != size();
++r, ptr = tmp)
while (c != size() && !comp(*ptr, *tmp)) ++c, next_rank[*tmp++] = r;
rank.swap(next_rank);
}
sa.emplace(sa.begin(), size());
rank.emplace_back(0);
}
void construct_lcp() {
for (size_t i{}, h{}; i != size(); ++i, h = h ? h - 1 : 0) {
for (size_t j{sa[rank[i] - 1] + h}; i + h != size() && j != size();
++j, ++h)
if (str[i + h] != str[j]) break;
lcp[rank[i] - 1] = h;
}
}
public:
static constexpr size_t npos = -1;
using char_type = element_type<str_type>;
std::vector<size_t>::const_iterator begin() const { return sa.begin() + 1; }
std::vector<size_t>::const_iterator end() const { return sa.end(); }
/*
* @fn operator[]
* @brief find the i-th suffix
* @param i the rank
* @return index of the suffix
*/
size_t operator[](size_t i) const { return sa[i + 1]; }
/*
* @fn size
* @return length of the string
*/
size_t size() const { return std::size(str); }
template <class type = str_type, typename = typename type::value_type>
suffix_array(const str_type &_str)
: str(_str), sa(size()), rank(size()), lcp(size()) {
construct_sa();
construct_lcp();
}
template <class type = str_type, std::enable_if_t<std::is_array<type>::value,
std::nullptr_t> = nullptr>
suffix_array(const str_type &_str) : sa(size()), rank(size()), lcp(size()) {
std::copy(std::begin(_str), std::end(_str), str);
construct_sa();
construct_lcp();
}
/*
* @fn find
* @brief find (key) as a substring
* @param key
* @return index if found, npos if not found
*/
size_t find(const str_type &key) const {
using std::begin;
using std::end;
size_t lower{npos}, upper{size()};
while (upper - lower > 1) {
size_t mid = (lower + upper) >> 1;
bool less = false;
for (auto i{begin(str) + sa[mid]}, j{begin(key)}; j != end(key);
++i, ++j) {
if (i == end(str) || *i < *j) {
less = true;
break;
}
if (*i > *j) break;
}
(less ? lower : upper) = mid;
}
if (upper == size()) return npos;
for (auto i{begin(str) + sa[upper]}, j{begin(key)}; j != end(key); ++i, ++j)
if (i == end(str) || *i != *j) return npos;
return sa[upper];
}
/*
* @return lengths of LCP of each adjacent pairs in the suffix
* array
*/
const std::vector<size_t> &lcp_array() const { return lcp; }
};
} // namespace workspace