Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub jellc/Library

:heavy_check_mark: test/aizu-online-judge/1342.test.cpp

Depends on

Code

#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/1342"

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <vector>

#include "src/opt/binary_search.hpp"

int main() {
  using namespace std;
  using namespace workspace;

  static const double eps = 1e-9;

  struct point {
    double x, y;
    double dist(point rhs) { return hypot(rhs.x - x, rhs.y - y); }
    point normalized() { return {x / hypot(x, y), y / hypot(x, y)}; }
    point scalized(double len) {
      return {x / hypot(x, y) * len, y / hypot(x, y) * len};
    }
    point operator+(point rhs) { return {x + rhs.x, y + rhs.y}; }
    bool operator==(point rhs) {
      return abs(x - rhs.x) < eps and abs(y - rhs.y) < eps;
    }
  };

  struct line {
    double a, b, c;
  };

  struct circle {
    point center;
    double radius;
    std::pair<point, point> intersect(circle rhs) {
      double r1, r2;
      auto [a, b] = center;
      auto [c, d] = rhs.center;
      r1 = radius;
      r2 = rhs.radius;
      if (a == c and b == d) return {center, center};
      line cln{2 * (c - a), 2 * (d - b),
               r1 * r1 - r2 * r2 + c * c + d * d - a * a - b * b};
      return intersect(cln);
    }
    std::pair<point, point> intersect(line ln) {
      point p1, p2;
      auto [a, b, c] = ln;
      double d = (c - a * center.x - b * center.y) / hypot(a, b);
      if (abs(d) > radius) return make_pair(p1, p2);
      point mid = center + point{a, b}.scalized(d);
      d = sqrt(radius * radius - d * d);
      p1 = mid + point{b, -a}.scalized(d);
      p2 = mid + point{b, -a}.scalized(-d);
      return make_pair(p1, p2);
    }
  };

  struct stick {
    point position;
    double height;
  };

  int n;
  double wall_hgt;
  const double sqre = 100;

  while (1) {
    cin >> n;
    cin >> wall_hgt;
    if (!n) break;
    vector<stick> stks(n);
    for (auto &[p, h] : stks) {
      double x, y;
      cin >> x >> y >> h;
      p = {x, y};
    }

    auto check_rad = [&](const double rad) -> bool {
      vector<circle> crcls;
      for (auto &[p, h] : stks) {
        circle cir;
        cir.center = p;
        cir.radius = rad > h ? sqrt(rad * rad - (rad - h) * (rad - h)) : rad;
        crcls.emplace_back(cir);
      }

      const double walld =
          rad > wall_hgt ? sqrt(rad * rad - (rad - wall_hgt) * (rad - wall_hgt))
                         : rad;

      auto check_external = [&](point p) -> bool {
        for (auto [c, r] : crcls) {
          if (p.dist(c) < r - eps) return false;
        }
        return min({p.x, sqre - p.x, p.y, sqre - p.y}) > walld - eps;
      };

      vector<point> cands;

      // corner
      for (auto x : {walld, sqre - walld}) {
        for (auto y : {walld, sqre - walld}) {
          cands.push_back({x, y});
        }
      }

      // between circls
      for (auto c1 : crcls) {
        for (auto c2 : crcls) {
          if (c1.center == c2.center) continue;
          auto [p1, p2] = c1.intersect(c2);
          cands.emplace_back(p1);
          cands.emplace_back(p2);
        }
      }

      // wall and circle
      for (auto c : crcls) {
        for (auto ln : vector<line>{{0, 1, walld},
                                    {1, 0, walld},
                                    {0, 1, sqre - walld},
                                    {1, 0, sqre - walld}}) {
          auto [p1, p2] = c.intersect(ln);
          cands.emplace_back(p1);
          cands.emplace_back(p2);
        }
      }

      for (auto p : cands) {
        if (check_external(p)) return true;
      }

      return false;
    };

    printf("%.5f\n", workspace::binary_search(0.0, 130.0, eps, check_rad));
  }
}
#line 1 "test/aizu-online-judge/1342.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/1342"

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <vector>

#line 2 "src/opt/binary_search.hpp"

/*
 * @file binary_search.hpp
 * @brief Binary Search
 */

#include <cassert>
#include <limits>
#include <tuple>
#line 12 "src/opt/binary_search.hpp"

namespace workspace {

/*
 * @fn binary_search
 * @brief binary search on a discrete range.
 * @param ok pred(ok) is true
 * @param ng pred(ng) is false
 * @param pred the predicate
 * @return the closest point to (ng) where pred is true
 */
template <class Iter, class Pred>
typename std::enable_if<
    std::is_convertible<decltype(std::declval<Pred>()(std::declval<Iter>())),
                        bool>::value,
    Iter>::type
binary_search(Iter ok, Iter ng, Pred pred) {
  assert(ok != ng);
  typename std::make_signed<decltype(ng - ok)>::type dist(ng - ok);
  while (1 < dist || dist < -1) {
    const Iter mid(ok + dist / 2);
    if (pred(mid))
      ok = mid, dist -= dist / 2;
    else
      ng = mid, dist /= 2;
  }
  return ok;
}

/*
 * @fn binary_search
 * @brief binary search on the real number line.
 * @param ok pred(ok) is true
 * @param ng pred(ng) is false
 * @param eps the error tolerance
 * @param pred the predicate
 * @return the boundary point
 */
template <class Real, class Pred>
typename std::enable_if<
    std::is_convertible<decltype(std::declval<Pred>()(std::declval<Real>())),
                        bool>::value,
    Real>::type
binary_search(Real ok, Real ng, const Real eps, Pred pred) {
  assert(ok != ng);
  for (auto loops = 0; loops != std::numeric_limits<Real>::digits &&
                       (ok + eps < ng || ng + eps < ok);
       ++loops) {
    const Real mid{(ok + ng) / 2};
    (pred(mid) ? ok : ng) = mid;
  }
  return ok;
}

/*
 * @fn parallel_binary_search
 * @brief parallel binary search on discrete ranges.
 * @param ends a vector of pairs; pred(first) is true, pred(second) is false
 * @param pred the predicate
 * @return the closest points to (second) where pred is true
 */
template <class Array,
          class Iter = typename std::decay<
              decltype(std::get<0>(std::declval<Array>()[0]))>::type,
          class Pred>
typename std::enable_if<
    std::is_convertible<
        decltype(std::declval<Pred>()(std::declval<std::vector<Iter>>())[0]),
        bool>::value,
    std::vector<Iter>>::type
parallel_binary_search(Array ends, Pred pred) {
  std::vector<Iter> mids(std::size(ends));
  for (;;) {
    bool all_found = true;
    for (size_t i{}; i != std::size(ends); ++i) {
      const Iter &ok = std::get<0>(ends[i]);
      const Iter &ng = std::get<1>(ends[i]);
      const Iter mid(
          ok + typename std::make_signed<decltype(ng - ok)>::type(ng - ok) / 2);
      if (mids[i] != mid) {
        all_found = false;
        mids[i] = mid;
      }
    }
    if (all_found) break;
    const auto res = pred(mids);
    for (size_t i{}; i != std::size(ends); ++i) {
      (res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
    }
  }
  return mids;
}

/*
 * @fn parallel_binary_search
 * @brief parallel binary search on the real number line.
 * @param ends a vector of pairs; pred(first) is true, pred(second) is false
 * @param eps the error tolerance
 * @param pred the predicate
 * @return the boundary points
 */
template <class Array,
          class Real = typename std::decay<
              decltype(std::get<0>(std::declval<Array>()[0]))>::type,
          class Pred>
typename std::enable_if<
    std::is_convertible<
        decltype(std::declval<Pred>()(std::declval<std::vector<Real>>())[0]),
        bool>::value,
    std::vector<Real>>::type
parallel_binary_search(Array ends, const Real eps, Pred pred) {
  std::vector<Real> mids(std::size(ends));
  for (auto loops = 0; loops != std::numeric_limits<Real>::digits; ++loops) {
    bool all_found = true;
    for (size_t i{}; i != std::size(ends); ++i) {
      const Real ok = std::get<0>(ends[i]);
      const Real ng = std::get<1>(ends[i]);
      if (ok + eps < ng || ng + eps < ok) {
        all_found = false;
        mids[i] = (ok + ng) / 2;
      }
    }
    if (all_found) break;
    const auto res = pred(mids);
    for (size_t i{}; i != std::size(ends); ++i) {
      (res[i] ? std::get<0>(ends[i]) : std::get<1>(ends[i])) = mids[i];
    }
  }
  return mids;
}

}  // namespace workspace
#line 10 "test/aizu-online-judge/1342.test.cpp"

int main() {
  using namespace std;
  using namespace workspace;

  static const double eps = 1e-9;

  struct point {
    double x, y;
    double dist(point rhs) { return hypot(rhs.x - x, rhs.y - y); }
    point normalized() { return {x / hypot(x, y), y / hypot(x, y)}; }
    point scalized(double len) {
      return {x / hypot(x, y) * len, y / hypot(x, y) * len};
    }
    point operator+(point rhs) { return {x + rhs.x, y + rhs.y}; }
    bool operator==(point rhs) {
      return abs(x - rhs.x) < eps and abs(y - rhs.y) < eps;
    }
  };

  struct line {
    double a, b, c;
  };

  struct circle {
    point center;
    double radius;
    std::pair<point, point> intersect(circle rhs) {
      double r1, r2;
      auto [a, b] = center;
      auto [c, d] = rhs.center;
      r1 = radius;
      r2 = rhs.radius;
      if (a == c and b == d) return {center, center};
      line cln{2 * (c - a), 2 * (d - b),
               r1 * r1 - r2 * r2 + c * c + d * d - a * a - b * b};
      return intersect(cln);
    }
    std::pair<point, point> intersect(line ln) {
      point p1, p2;
      auto [a, b, c] = ln;
      double d = (c - a * center.x - b * center.y) / hypot(a, b);
      if (abs(d) > radius) return make_pair(p1, p2);
      point mid = center + point{a, b}.scalized(d);
      d = sqrt(radius * radius - d * d);
      p1 = mid + point{b, -a}.scalized(d);
      p2 = mid + point{b, -a}.scalized(-d);
      return make_pair(p1, p2);
    }
  };

  struct stick {
    point position;
    double height;
  };

  int n;
  double wall_hgt;
  const double sqre = 100;

  while (1) {
    cin >> n;
    cin >> wall_hgt;
    if (!n) break;
    vector<stick> stks(n);
    for (auto &[p, h] : stks) {
      double x, y;
      cin >> x >> y >> h;
      p = {x, y};
    }

    auto check_rad = [&](const double rad) -> bool {
      vector<circle> crcls;
      for (auto &[p, h] : stks) {
        circle cir;
        cir.center = p;
        cir.radius = rad > h ? sqrt(rad * rad - (rad - h) * (rad - h)) : rad;
        crcls.emplace_back(cir);
      }

      const double walld =
          rad > wall_hgt ? sqrt(rad * rad - (rad - wall_hgt) * (rad - wall_hgt))
                         : rad;

      auto check_external = [&](point p) -> bool {
        for (auto [c, r] : crcls) {
          if (p.dist(c) < r - eps) return false;
        }
        return min({p.x, sqre - p.x, p.y, sqre - p.y}) > walld - eps;
      };

      vector<point> cands;

      // corner
      for (auto x : {walld, sqre - walld}) {
        for (auto y : {walld, sqre - walld}) {
          cands.push_back({x, y});
        }
      }

      // between circls
      for (auto c1 : crcls) {
        for (auto c2 : crcls) {
          if (c1.center == c2.center) continue;
          auto [p1, p2] = c1.intersect(c2);
          cands.emplace_back(p1);
          cands.emplace_back(p2);
        }
      }

      // wall and circle
      for (auto c : crcls) {
        for (auto ln : vector<line>{{0, 1, walld},
                                    {1, 0, walld},
                                    {0, 1, sqre - walld},
                                    {1, 0, sqre - walld}}) {
          auto [p1, p2] = c.intersect(ln);
          cands.emplace_back(p1);
          cands.emplace_back(p2);
        }
      }

      for (auto p : cands) {
        if (check_external(p)) return true;
      }

      return false;
    };

    printf("%.5f\n", workspace::binary_search(0.0, 130.0, eps, check_rad));
  }
}
Back to top page