This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2450"
#include <algorithm>
#include <iostream>
#include "src/data_structure/segment_tree/lazy.hpp"
#include "src/graph/undirected/tree/heavy_light_decomposition.hpp"
#include "src/utils/io/istream.hpp"
int main() {
struct endo {
bool assign = false;
int value;
endo() = default;
endo(int v) : assign(true), value(v) {}
endo operator*(endo rhs) const {
if (rhs.assign) return rhs;
return *this;
}
};
struct mono {
int cnt = 0;
int sum = 0;
int left = 0;
int right = 0;
int max = 0;
int best = -10000;
mono operator+(mono rhs) const {
return {cnt + rhs.cnt,
sum + rhs.sum,
std::max(left, sum + rhs.left),
std::max(right + rhs.sum, rhs.right),
std::max({max, rhs.max, right + rhs.left}),
std::max(best, rhs.best)};
}
mono operator*(endo rhs) const {
mono ret = *this;
if (rhs.assign) {
if (rhs.value < 0) {
ret.sum = rhs.value * cnt;
ret.left = ret.right = ret.max = 0;
} else {
ret.sum = ret.left = ret.right = ret.max = cnt * rhs.value;
}
ret.best = rhs.value;
}
return ret;
}
};
int n, q;
std::cin >> n >> q;
std::vector<int> w(n);
workspace::cin >> w;
heavy_light_decomposition hld(n);
for (auto e = 1; e != n; ++e) {
int u, v;
std::cin >> u >> v;
--u, --v;
hld.add_edge(u, v);
}
hld.make(0);
workspace::lazy_segment_tree<mono, endo> seg(n);
for (auto v = 0; v != n; ++v) {
auto &now = seg[hld.index(v)];
now.cnt = 1;
now = now * endo{w[v]};
}
while (q--) {
int tp, a, b, c;
std::cin >> tp >> a >> b >> c;
--a, --b;
auto [left, right] = hld.split_path(a, b);
if (tp == 1) {
for (auto &&[l, r] : left) {
seg.apply(l, r, c);
}
for (auto &&[l, r] : right) {
seg.apply(l, r, c);
}
} else {
mono lv;
for (auto &&[l, r] : left) {
lv = seg.fold(l, r) + lv;
}
mono rv;
for (auto &&[l, r] : right) {
rv = seg.fold(l, r) + rv;
}
std::swap(lv.left, lv.right);
auto all = lv + rv;
if (all.max)
std::cout << all.max << '\n';
else
std::cout << all.best << '\n';
}
}
}
#line 1 "test/aizu-online-judge/2450.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2450"
#include <algorithm>
#include <iostream>
#line 2 "src/data_structure/segment_tree/lazy.hpp"
/**
* @file lazy.hpp
* @brief Lazy Segment Tree
*/
#include <cassert>
#include <queue>
#include <vector>
#line 2 "src/algebra/system/monoid.hpp"
#include <limits>
namespace workspace {
template <class T, class E = T> struct min_monoid {
using value_type = T;
static T min, max;
T value;
min_monoid() : value(max) {}
min_monoid(const T &value) : value(value) {}
operator T() const { return value; }
min_monoid operator+(const min_monoid &rhs) const {
return value < rhs.value ? *this : rhs;
}
min_monoid operator*(const E &rhs) const;
};
template <class T, class E>
T min_monoid<T, E>::min = std::numeric_limits<T>::min() / 2;
template <class T, class E>
T min_monoid<T, E>::max = std::numeric_limits<T>::max() / 2;
template <class T, class E = T> struct max_monoid : min_monoid<T, E> {
using base = min_monoid<T, E>;
using base::min_monoid;
max_monoid() : base(base::min) {}
max_monoid operator+(const max_monoid &rhs) const {
return !(base::value < rhs.value) ? *this : rhs;
}
max_monoid operator*(const E &rhs) const;
};
}
#line 2 "src/algebra/system/operation.hpp"
/**
* @file operation.hpp
* @brief Operation Traits
*/
#include <functional>
#include <type_traits>
#line 2 "lib/cxx17"
#line 2 "lib/cxx14"
#ifndef _CXX14_CONSTEXPR
#if __cplusplus >= 201402L
#define _CXX14_CONSTEXPR constexpr
#else
#define _CXX14_CONSTEXPR
#endif
#endif
#line 4 "lib/cxx17"
#ifndef _CXX17_CONSTEXPR
#if __cplusplus >= 201703L
#define _CXX17_CONSTEXPR constexpr
#else
#define _CXX17_CONSTEXPR
#endif
#endif
#ifndef _CXX17_STATIC_ASSERT
#if __cplusplus >= 201703L
#define _CXX17_STATIC_ASSERT static_assert
#else
#define _CXX17_STATIC_ASSERT assert
#endif
#endif
#include <iterator>
#if __cplusplus < 201703L
namespace std {
/**
* @brief Return the size of a container.
* @param __cont Container.
*/
template <typename _Container>
constexpr auto size(const _Container& __cont) noexcept(noexcept(__cont.size()))
-> decltype(__cont.size()) {
return __cont.size();
}
/**
* @brief Return the size of an array.
*/
template <typename _Tp, size_t _Nm>
constexpr size_t size(const _Tp (&)[_Nm]) noexcept {
return _Nm;
}
/**
* @brief Return whether a container is empty.
* @param __cont Container.
*/
template <typename _Container>
[[nodiscard]] constexpr auto empty(const _Container& __cont) noexcept(
noexcept(__cont.empty())) -> decltype(__cont.empty()) {
return __cont.empty();
}
/**
* @brief Return whether an array is empty (always false).
*/
template <typename _Tp, size_t _Nm>
[[nodiscard]] constexpr bool empty(const _Tp (&)[_Nm]) noexcept {
return false;
}
/**
* @brief Return whether an initializer_list is empty.
* @param __il Initializer list.
*/
template <typename _Tp>
[[nodiscard]] constexpr bool empty(initializer_list<_Tp> __il) noexcept {
return __il.size() == 0;
}
struct monostate {};
} // namespace std
#else
#include <variant>
#endif
#line 12 "src/algebra/system/operation.hpp"
namespace workspace {
// Unary `+`
template <class _Tp>
using require_unary_plus = std::enable_if_t<
std::is_convertible<decltype(+std::declval<const _Tp &>()), _Tp>::value>;
template <class _Tp, class = void> struct has_unary_plus : std::false_type {};
template <class _Tp>
struct has_unary_plus<_Tp, require_unary_plus<_Tp>> : std::true_type {};
// Unary `-`
template <class _Tp>
using require_unary_minus = std::enable_if_t<
std::is_convertible<decltype(-std::declval<const _Tp &>()), _Tp>::value>;
template <class _Tp, class = void> struct has_unary_minus : std::false_type {};
template <class _Tp>
struct has_unary_minus<_Tp, require_unary_minus<_Tp>> : std::true_type {};
// Binary `+`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_plus =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() +
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_plus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_plus<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>>
: std::true_type {};
// Binary `-`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_minus =
std::__void_t<decltype(std::declval<const _Tp1 &>() -
std::declval<const _Tp2 &>())>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_minus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_minus<_Tp1, _Tp2, require_binary_minus<_Tp1, _Tp2>>
: std::true_type {};
// Binary `*`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_multiplies =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() *
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_multiplies : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_multiplies<_Tp1, _Tp2, require_binary_multiplies<_Tp1, _Tp2>>
: std::true_type {};
// Binary `/`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_divides =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() /
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_divides : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_divides<_Tp1, _Tp2, require_binary_divides<_Tp1, _Tp2>>
: std::true_type {};
// Binary `%`
template <class _Tp1, class _Tp2 = _Tp1>
using require_binary_modulus =
std::enable_if_t<std::is_convertible<decltype(std::declval<const _Tp1 &>() %
std::declval<const _Tp2 &>()),
_Tp1>::value>;
template <class _Tp1, class _Tp2 = _Tp1, class = void>
struct has_binary_modulus : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_binary_modulus<_Tp1, _Tp2, require_binary_modulus<_Tp1, _Tp2>>
: std::true_type {};
template <class _Tp1, class _Tp2 = _Tp1, class = void, class = void,
class = void, class = void>
struct has_arithmetic : std::false_type {};
template <class _Tp1, class _Tp2>
struct has_arithmetic<_Tp1, _Tp2, require_binary_plus<_Tp1, _Tp2>,
require_binary_minus<_Tp1, _Tp2>,
require_binary_multiplies<_Tp1, _Tp2>,
require_binary_divides<_Tp1, _Tp2>> : std::true_type {};
template <class _Tp1, class _Tp2 = _Tp1>
using require_arithmetic = std::enable_if_t<has_arithmetic<_Tp1, _Tp2>::value>;
// Binary `<`
template <class _Tp, class = void> struct is_comparable : std::false_type {};
template <class _Tp>
struct is_comparable<_Tp, std::__void_t<decltype(std::declval<const _Tp &>() <
std::declval<const _Tp &>())>>
: std::true_type {};
template <class _Tp, bool _Default = false> struct try_less : std::less<_Tp> {
constexpr bool operator()(const _Tp &__x, const _Tp &__y) noexcept {
if _CXX17_CONSTEXPR (is_comparable<_Tp>::value)
return std::less<_Tp>::operator()(__x, __y);
else
return _Default;
}
};
} // namespace workspace
#line 2 "src/utils/sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#include <cstdint>
#line 11 "src/utils/sfinae.hpp"
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
std::declval<Container&>()))>::type;
template <class _Tp, class = void> struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<
_Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
: std::true_type {
using type = decltype(std::begin(std::declval<const _Tp&>()));
};
template <class _Tp, class = void> struct has_size : std::false_type {};
template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
: std::true_type {};
template <class _Tp, class = void> struct has_resize : std::false_type {};
template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
std::declval<size_t>()))>> : std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
template <class> struct first_arg { using type = void; };
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};
template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _Container, class = void> struct get_dimension {
static constexpr size_t value = 0;
};
template <class _Container>
struct get_dimension<_Container,
std::enable_if_t<has_begin<_Container>::value>> {
static constexpr size_t value =
1 + get_dimension<typename std::iterator_traits<
typename has_begin<_Container>::type>::value_type>::value;
};
} // namespace workspace
#line 2 "src/data_structure/segment_tree/waitings.hpp"
#line 5 "src/data_structure/segment_tree/waitings.hpp"
namespace workspace {
namespace internal {
struct waitings : std::queue<size_t> {
waitings(size_t n) : in(n) {}
bool push(size_t index) {
// assert(index < in.size());
if (in[index]) return false;
emplace(index);
return (in[index] = true);
}
size_t pop() {
// assert(!empty());
auto index = front();
std::queue<size_t>::pop();
in[index] = false;
return index;
}
private:
std::vector<int_least8_t> in;
};
} // namespace internal
} // namespace workspace
#line 16 "src/data_structure/segment_tree/lazy.hpp"
namespace workspace {
template <class _Monoid, class _End,
class Monoid_container = std::vector<_Monoid>,
class Endomorphism_container = std::vector<_End>>
class lazy_segment_tree {
static_assert(
std::is_same<_Monoid, typename Monoid_container::value_type>::value);
static_assert(
std::is_same<_End, typename Endomorphism_container::value_type>::value);
static_assert(has_binary_plus<_Monoid>::value,
"\'_Monoid\' has no proper binary \'operator+\'.");
static_assert(has_binary_multiplies<_End>::value,
"\'_End\' has no proper binary \'operator*\'.");
static_assert(has_binary_multiplies<_Monoid, _End>::value,
"\'_End\' is not applicable to \'_Monoid\'.");
size_t size_orig, height, size_ext;
Monoid_container data;
Endomorphism_container lazy;
internal::waitings wait;
void repair() {
while (!wait.empty()) {
const size_t __i = wait.pop() >> 1;
if (__i && wait.push(__i)) pull(__i);
}
}
void _apply(size_t node, const _End &__e) {
data[node] = data[node] * __e;
if (node < size_ext) lazy[node] = lazy[node] * __e;
}
void push(size_t node) {
_apply(node << 1, lazy[node]);
_apply(node << 1 | 1, lazy[node]);
lazy[node] = _End{};
}
void pull(size_t node) { data[node] = data[node << 1] + data[node << 1 | 1]; }
template <class _Pred>
size_t left_partition_subtree(size_t node, _Monoid mono, _Pred __pred) {
assert(node);
while (node < size_ext) {
push(node);
const _Monoid __tmp = data[(node <<= 1) | 1] + mono;
if (__pred(__tmp))
mono = std::move(__tmp);
else
++node;
}
return ++node -= size_ext;
}
template <class _Pred>
size_t right_partition_subtree(size_t node, _Monoid mono, _Pred __pred) {
assert(node);
while (node < size_ext) {
push(node);
const _Monoid __tmp = mono + data[node <<= 1];
if (__pred(__tmp)) ++node, mono = std::move(__tmp);
}
return (node -= size_ext) < size_orig ? node : size_orig;
}
public:
class iterator {
lazy_segment_tree *__p;
size_t __i;
public:
using difference_type = typename std::make_signed<size_t>::type;
using value_type = _Monoid;
using reference = _Monoid &;
using pointer = iterator;
using iterator_category = std::random_access_iterator_tag;
/**
* @brief Construct a new iterator object
*
*/
iterator() = default;
/**
* @brief Construct a new iterator object
*
* @param __p Pointer to a segment tree object
* @param __i Index
*/
iterator(lazy_segment_tree *__p, size_t __i) : __p(__p), __i(__i) {}
bool operator==(iterator const &rhs) const {
return __p == rhs.__p && __i == rhs.__i;
}
bool operator!=(iterator const &rhs) const { return !operator==(rhs); }
bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }
iterator &operator++() { return ++__i, *this; }
iterator &operator--() { return --__i, *this; }
difference_type operator-(iterator const &rhs) const {
return __i - rhs.__i;
}
/**
* @brief
*
* @return reference
*/
reference operator*() const { return __p->operator[](__i); }
};
using value_type = typename iterator::value_type;
using reference = typename iterator::reference;
iterator begin() { return {this, 0}; }
iterator end() { return {this, size_orig}; }
auto rbegin() { return std::make_reverse_iterator(end()); }
auto rend() { return std::make_reverse_iterator(begin()); }
lazy_segment_tree(size_t __n = 0)
: size_orig{__n},
height(__n > 1 ? 32 - __builtin_clz(__n - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext),
wait(size_ext << 1) {}
lazy_segment_tree(size_t __n, const _Monoid &init) : lazy_segment_tree(__n) {
std::fill_n(std::next(std::begin(data), size_ext), __n, init);
for (size_t i{size_ext}; --i;) pull(i);
}
template <class iter_type, class value_type = typename std::iterator_traits<
iter_type>::value_type>
lazy_segment_tree(iter_type first, iter_type last)
: size_orig(std::distance(first, last)),
height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext),
wait(size_ext << 1) {
static_assert(std::is_constructible<_Monoid, value_type>::value,
"_Monoid(iter_type::value_type) is not constructible.");
for (auto iter{std::next(std::begin(data), size_ext)};
iter != std::end(data) && first != last; ++iter, ++first)
*iter = _Monoid(*first);
for (size_t i{size_ext}; --i;) pull(i);
}
/**
* @return Number of elements.
*/
size_t size() const { return size_orig; }
/**
* @param __i Index of the element
* @return Reference to the element.
*/
_Monoid &operator[](size_t __i) {
assert(__i < size_orig);
__i |= size_ext;
wait.push(__i);
for (size_t i = height; i; --i) push(__i >> i);
return data[__i];
}
void apply(const _End &__e) { apply(0, size_orig, __e); }
void apply(size_t __i, const _End &__e) { apply(__i, __i + 1, __e); }
void apply(size_t first, size_t last, const _End &__e) {
assert(last <= size_orig);
repair();
if (first >= last) return;
first += size_ext, last += size_ext;
--last;
for (size_t i = height; i; --i) push(first >> i), push(last >> i);
++last;
for (size_t l = first, r = last; l != r; l >>= 1, r >>= 1) {
if (l & 1) _apply(l++, __e);
if (r & 1) _apply(--r, __e);
}
for (first >>= __builtin_ffs(first); first; first >>= 1) pull(first);
for (last >>= __builtin_ffs(last); last; last >>= 1) pull(last);
}
/**
* @param first Left end, inclusive
* @param last Right end, exclusive
* @return Sum of elements in the interval.
*/
_Monoid fold(size_t first, size_t last) {
assert(last <= size_orig);
repair();
if (first >= last) return _Monoid{};
first += size_ext, last += size_ext - 1;
_Monoid left_val{}, right_val{};
for (size_t l = first, r = last + 1; l != r; l >>= 1, r >>= 1) {
if (l & 1) left_val = left_val + data[l++];
if (r & 1) right_val = data[--r] + right_val;
left_val = left_val * lazy[first >>= 1];
right_val = right_val * lazy[last >>= 1];
}
while (first >>= 1, last >>= 1) {
left_val = left_val * lazy[first];
right_val = right_val * lazy[last];
}
return left_val + right_val;
}
/**
* @return Sum of all elements.
*/
_Monoid fold() {
repair();
return data[1];
}
/**
* @brief Binary search for the partition point.
* @param __r Right fixed end of the interval, exclusive
* @param __pred Predicate in the form of 'bool(_Monoid)'
* @return Left end of the extremal interval satisfying the condition,
* inclusive.
*/
template <class _Pred> size_t left_partition(size_t __r, _Pred __pred) {
assert(__r <= size_orig);
repair();
__r += size_ext - 1;
for (size_t i{height}; i; --i) push(__r >> i);
++__r;
_Monoid mono{};
for (size_t __l{size_ext}, step{}; __l != __r;
__l >>= 1, __r >>= 1, ++step) {
if ((__l & 1) != (__r & 1)) {
const _Monoid __tmp = data[--__r] + mono;
if (!__pred(__tmp))
return left_partition_subtree(__r, std::move(mono), __pred);
mono = std::move(__tmp);
}
}
return 0;
}
/**
* @brief Binary search for the partition point.
* @param __l Left fixed end of the interval, inclusive
* @param __pred Predicate in the form of 'bool(_Monoid)'
* @return Right end of the extremal interval satisfying the condition,
* exclusive.
*/
template <class _Pred> size_t right_partition(size_t __l, _Pred __pred) {
assert(__l <= size_orig);
repair();
__l += size_ext;
for (size_t i{height}; i; --i) push(__l >> i);
_Monoid mono{};
for (size_t __r{size_ext << 1}, step{}; __l != __r;
__l >>= 1, __r >>= 1, ++step) {
if ((__l & 1) != (__r & 1)) {
const _Monoid __tmp = mono + data[__l];
if (!__pred(__tmp))
return right_partition_subtree(__l, std::move(mono), __pred);
mono = std::move(__tmp);
++__l;
}
}
return size_orig;
}
};
} // namespace workspace
#line 2 "src/graph/undirected/tree/heavy_light_decomposition.hpp"
/**
* @file heavy_light_decomposition.hpp
* @brief Heavy-Light Decomposition
*/
#line 9 "src/graph/undirected/tree/heavy_light_decomposition.hpp"
#include <numeric>
#line 11 "src/graph/undirected/tree/heavy_light_decomposition.hpp"
class heavy_light_decomposition {
constexpr static size_t __nil = -1;
std::vector<std::vector<size_t>> __tree;
std::vector<size_t> __sorted, __in, __out, __head, __depth;
size_t sort_children(size_t node, size_t prev) {
size_t sum = 1, max_size = 0;
for (size_t &to : __tree[node]) {
if (to == prev) continue;
__depth[to] = __depth[node] + 1;
size_t child_size = sort_children(to, node);
sum += child_size;
if (max_size < child_size) {
max_size = child_size;
std::swap(__tree[node].front(), to);
}
}
return sum;
}
void traverse(size_t node, size_t prev) {
__in[node] = __sorted.size();
__sorted.emplace_back(node);
if (!__tree[node].empty() && __tree[node].front() != prev) {
for (const size_t to : __tree[node])
if (to != prev) __head[to] = node + size();
__head[__tree[node].front()] =
__head[node] < size() ? __head[node] : node;
for (const size_t to : __tree[node])
if (to != prev) traverse(to, node);
}
__out[node] = __sorted.size();
}
bool made() const { return !__sorted.empty(); }
public:
using interval = std::pair<size_t, size_t>;
heavy_light_decomposition() = default;
heavy_light_decomposition(size_t __n) : __tree(__n) {}
/**
* @return The size of the __tree.
*/
size_t size() const { return __tree.size(); }
/**
* @param node The root of the subtree
* @return The size of the subtree.
*/
size_t size(size_t node) const {
assert(made());
return __out[node] - __in[node];
}
void add_edge(size_t __u, size_t __v) {
assert(__u < size());
assert(__v < size());
__tree[__u].emplace_back(__v);
__tree[__v].emplace_back(__u);
}
const decltype(__tree) &tree() const { return __tree; }
/**
* @brief Run HLD with given root __in linear time.
* @param root The root node.
*/
void make(size_t __root) {
__sorted.clear(), __in.resize(size()), __out.resize(size()),
__head.resize(size()), __depth.resize(size());
__head[__root] = __root + size(), __depth[__root] = 0;
sort_children(__root, __nil);
traverse(__root, __root);
}
size_t prev_node(size_t node) const {
assert(made());
return __in[node] ? __sorted[__in[node] - 1] : __nil;
}
size_t next_node(size_t node) const {
assert(made());
return __in[node] + 1 < size() ? __sorted[__in[node] + 1] : __nil;
}
size_t index(size_t node) const {
assert(made());
return __in[node];
}
size_t node(size_t __i) const {
assert(made());
return __sorted[__i];
}
/**
* @return The current root of the __tree.
*/
size_t root() const {
assert(made());
return __sorted.front();
}
/**
* @param root The root of the subtree.
* @return The interval representing the subtree.
*/
interval subtree(size_t __v) const {
assert(made());
return {__in[__v], __out[__v]};
}
/**
* @param __v
* @return Return v if v is the root.
*/
size_t parent(size_t __v) const {
assert(made());
return __head[__v] < size() ? prev_node(__v) : __head[__v] - size();
}
size_t top(size_t __v) const {
assert(made());
return __head[__v] < size() ? __head[__v] : __v;
}
/**
* @brief Get LCA in O(log(size)) time.
* @param __u 1st node
* @param __v 2nd node
* @return Lowest Common Ancestor of the two.
*/
size_t lca(size_t __u, size_t __v) const {
assert(made());
if (__in[__v] < __in[__u]) std::swap(__u, __v);
if (__in[__v] < __out[__u]) return __u;
while (__in[__u] < __in[__v]) __v = parent(top(__v));
return __v;
}
/**
* @brief Ancestor.
* @return k-th ancestor of v.
*/
size_t ancestor(size_t __v, size_t __k) const {
assert(made());
while (__k) {
assert(__in[__v]);
auto __t = top(__v);
auto __d = __in[__v] - __in[__t];
if (__d < __k) {
__k -= __d + 1;
__v = __head[__t] - size();
} else {
__v = __sorted[__in[__v] - __k];
__k = 0;
}
}
return __v;
}
size_t depth(size_t __v) const { return __depth[__v]; }
size_t distance(size_t __u, size_t __v) const {
return __depth[__u] + __depth[__v] - __depth[lca(__u, __v)] * 2;
}
/**
* @brief Split a path into O(log(size)) paths.
* @return Pair of list of ascending paths. first.back() is the index of
* lca(u, v).
*/
auto split_path(size_t __u, size_t __v) const {
assert(made());
if (__in[__v] < __in[__u]) std::swap(__u, __v);
std::vector<std::pair<size_t, size_t>> left, right;
auto utop = top(__u), vtop = top(__v);
while (utop != vtop) {
left.emplace_back(__in[vtop], __in[__v] + 1);
vtop = top(__v = parent(vtop));
if (__in[__v] < __in[__u]) {
std::swap(__u, __v);
std::swap(utop, vtop);
std::swap(left, right);
}
}
left.emplace_back(__in[__u], __in[__v] + 1);
return std::make_pair(left, right);
}
/**
* @brief Split a path upto root() into O(log(size)) paths.
* @return List of ascending paths. back() is the index of lca(root(), v).
*/
auto split_path(size_t __v) const {
assert(made());
auto [left, right] = split_path(root(), __v);
right.insert(right.begin(), left.begin(), left.end());
return right;
}
};
#line 2 "src/utils/io/istream.hpp"
/**
* @file istream.hpp
* @brief Input Stream
*/
#include <cxxabi.h>
#line 12 "src/utils/io/istream.hpp"
#include <tuple>
#line 16 "src/utils/io/istream.hpp"
namespace workspace {
namespace _istream_impl {
template <class _Tp, typename = void> struct helper {
helper(std::istream &__is, _Tp &__x) {
if _CXX17_CONSTEXPR (has_begin<_Tp &>::value)
for (auto &&__e : __x) helper<std::decay_t<decltype(__e)>>(__is, __e);
else
static_assert(has_begin<_Tp>::value, "istream unsupported type.");
}
};
template <class _Tp>
struct helper<_Tp, std::__void_t<decltype(std::declval<std::istream &>() >>
std::declval<_Tp &>())>> {
helper(std::istream &__is, _Tp &__x) { __is >> __x; }
};
#ifdef __SIZEOF_INT128__
template <> struct helper<__uint128_t, void> {
helper(std::istream &__is, __uint128_t &__x) {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
__x = 0;
for (char __d : __s) {
__x *= 10;
__d -= '0';
if (__neg)
__x -= __d;
else
__x += __d;
}
}
};
template <> struct helper<__int128_t, void> {
helper(std::istream &__is, __int128_t &__x) {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
__x = 0;
for (char __d : __s) {
__x *= 10;
__d -= '0';
if (__neg)
__x -= __d;
else
__x += __d;
}
}
};
#endif // INT128
template <class _T1, class _T2> struct helper<std::pair<_T1, _T2>> {
helper(std::istream &__is, std::pair<_T1, _T2> &__x) {
helper<_T1>(__is, __x.first), helper<_T2>(__is, __x.second);
}
};
template <class... _Tp> struct helper<std::tuple<_Tp...>> {
helper(std::istream &__is, std::tuple<_Tp...> &__x) { iterate(__is, __x); }
private:
template <class _Tuple, size_t _Nm = 0>
void iterate(std::istream &__is, _Tuple &__x) {
if _CXX17_CONSTEXPR (_Nm != std::tuple_size<_Tuple>::value) {
helper<typename std::tuple_element<_Nm, _Tuple>::type>(
__is, std::get<_Nm>(__x)),
iterate<_Tuple, _Nm + 1>(__is, __x);
}
}
};
} // namespace _istream_impl
/**
* @brief A wrapper class for std::istream.
*/
class istream : public std::istream {
public:
/**
* @brief Wrapped operator.
*/
template <typename _Tp> istream &operator>>(_Tp &__x) {
_istream_impl::helper<_Tp>(*this, __x);
if (std::istream::fail()) {
static auto once = atexit([] {
std::cerr << "\n\033[43m\033[30mwarning: failed to read \'"
<< abi::__cxa_demangle(typeid(_Tp).name(), 0, 0, 0)
<< "\'.\033[0m\n\n";
});
assert(!once);
}
return *this;
}
};
decltype(auto) cin = static_cast<istream &>(std::cin);
} // namespace workspace
#line 9 "test/aizu-online-judge/2450.test.cpp"
int main() {
struct endo {
bool assign = false;
int value;
endo() = default;
endo(int v) : assign(true), value(v) {}
endo operator*(endo rhs) const {
if (rhs.assign) return rhs;
return *this;
}
};
struct mono {
int cnt = 0;
int sum = 0;
int left = 0;
int right = 0;
int max = 0;
int best = -10000;
mono operator+(mono rhs) const {
return {cnt + rhs.cnt,
sum + rhs.sum,
std::max(left, sum + rhs.left),
std::max(right + rhs.sum, rhs.right),
std::max({max, rhs.max, right + rhs.left}),
std::max(best, rhs.best)};
}
mono operator*(endo rhs) const {
mono ret = *this;
if (rhs.assign) {
if (rhs.value < 0) {
ret.sum = rhs.value * cnt;
ret.left = ret.right = ret.max = 0;
} else {
ret.sum = ret.left = ret.right = ret.max = cnt * rhs.value;
}
ret.best = rhs.value;
}
return ret;
}
};
int n, q;
std::cin >> n >> q;
std::vector<int> w(n);
workspace::cin >> w;
heavy_light_decomposition hld(n);
for (auto e = 1; e != n; ++e) {
int u, v;
std::cin >> u >> v;
--u, --v;
hld.add_edge(u, v);
}
hld.make(0);
workspace::lazy_segment_tree<mono, endo> seg(n);
for (auto v = 0; v != n; ++v) {
auto &now = seg[hld.index(v)];
now.cnt = 1;
now = now * endo{w[v]};
}
while (q--) {
int tp, a, b, c;
std::cin >> tp >> a >> b >> c;
--a, --b;
auto [left, right] = hld.split_path(a, b);
if (tp == 1) {
for (auto &&[l, r] : left) {
seg.apply(l, r, c);
}
for (auto &&[l, r] : right) {
seg.apply(l, r, c);
}
} else {
mono lv;
for (auto &&[l, r] : left) {
lv = seg.fold(l, r) + lv;
}
mono rv;
for (auto &&[l, r] : right) {
rv = seg.fold(l, r) + rv;
}
std::swap(lv.left, lv.right);
auto all = lv + rv;
if (all.max)
std::cout << all.max << '\n';
else
std::cout << all.best << '\n';
}
}
}