This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/number_theory/sqrt_mod.hpp"
#pragma once
/**
* @file sqrt_mod.hpp
* @brief Tonelli-Shanks Algorithm
*/
#include "pow_mod.hpp"
#include "src/utils/sfinae.hpp"
namespace workspace {
/**
* @brief Compile time modular square root.
*
* @param __x
* @param __mod Modulus
* @return One if it exists. Otherwise -1.
*/
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> sqrt_mod(
_Tp __x, _Tp __mod) noexcept {
assert(__mod > 0);
using mul_type = typename multiplicable_uint<_Tp>::type;
if ((__x %= __mod) < 0) __x += __mod;
if (!__x) return 0;
if (__mod == 2) return __x;
if (pow_mod(__x, __mod >> 1, __mod) != 1) return -1;
_Tp __z = __builtin_ctz(__mod - 1), __q = __mod >> __z;
mul_type __a = pow_mod(__x, (__q + 1) >> 1, __mod), __b = 2;
while (pow_mod<_Tp>(__b, __mod >> 1, __mod) == 1) ++__b;
__b = pow_mod<_Tp>(__b, __q, __mod);
_Tp __shift = 0;
for (auto __r = __a * __a % __mod * pow_mod(__x, __mod - 2, __mod) % __mod;
__r != 1; (__r *= (__b *= __b) %= __mod) %= __mod) {
auto __bsf = __z;
for (auto __e = __r; __e != 1; --__bsf) (__e *= __e) %= __mod;
while (++__shift != __bsf) (__b *= __b) %= __mod;
(__a *= __b) %= __mod;
}
return __a;
};
} // namespace workspace
#line 2 "src/number_theory/sqrt_mod.hpp"
/**
* @file sqrt_mod.hpp
* @brief Tonelli-Shanks Algorithm
*/
#line 2 "src/number_theory/pow_mod.hpp"
/**
* @file mod_pow.hpp
* @brief Modular Exponentiation
*/
#include <cassert>
#line 2 "src/utils/sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#include <cstdint>
#include <iterator>
#include <type_traits>
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
std::declval<Container&>()))>::type;
template <class _Tp, class = void> struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<
_Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
: std::true_type {
using type = decltype(std::begin(std::declval<const _Tp&>()));
};
template <class _Tp, class = void> struct has_size : std::false_type {};
template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
: std::true_type {};
template <class _Tp, class = void> struct has_resize : std::false_type {};
template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
std::declval<size_t>()))>> : std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
template <class> struct first_arg { using type = void; };
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};
template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _Container, class = void> struct get_dimension {
static constexpr size_t value = 0;
};
template <class _Container>
struct get_dimension<_Container,
std::enable_if_t<has_begin<_Container>::value>> {
static constexpr size_t value =
1 + get_dimension<typename std::iterator_traits<
typename has_begin<_Container>::type>::value_type>::value;
};
} // namespace workspace
#line 11 "src/number_theory/pow_mod.hpp"
namespace workspace {
/**
* @brief Compile time modular exponentiation.
*
* @param __x
* @param __n Exponent
* @param __mod Modulus
* @return
*/
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> pow_mod(
_Tp __x, _Tp __n, _Tp __mod) noexcept {
assert(__mod > 0);
using mul_type = typename multiplicable_uint<_Tp>::type;
if ((__x %= __mod) < 0) __x += __mod;
mul_type __y{1};
while (__n) {
if (__n & 1) (__y *= __x) %= __mod;
__x = (mul_type)__x * __x % __mod;
__n >>= 1;
}
return __y;
};
} // namespace workspace
#line 10 "src/number_theory/sqrt_mod.hpp"
namespace workspace {
/**
* @brief Compile time modular square root.
*
* @param __x
* @param __mod Modulus
* @return One if it exists. Otherwise -1.
*/
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> sqrt_mod(
_Tp __x, _Tp __mod) noexcept {
assert(__mod > 0);
using mul_type = typename multiplicable_uint<_Tp>::type;
if ((__x %= __mod) < 0) __x += __mod;
if (!__x) return 0;
if (__mod == 2) return __x;
if (pow_mod(__x, __mod >> 1, __mod) != 1) return -1;
_Tp __z = __builtin_ctz(__mod - 1), __q = __mod >> __z;
mul_type __a = pow_mod(__x, (__q + 1) >> 1, __mod), __b = 2;
while (pow_mod<_Tp>(__b, __mod >> 1, __mod) == 1) ++__b;
__b = pow_mod<_Tp>(__b, __q, __mod);
_Tp __shift = 0;
for (auto __r = __a * __a % __mod * pow_mod(__x, __mod - 2, __mod) % __mod;
__r != 1; (__r *= (__b *= __b) %= __mod) %= __mod) {
auto __bsf = __z;
for (auto __e = __r; __e != 1; --__bsf) (__e *= __e) %= __mod;
while (++__shift != __bsf) (__b *= __b) %= __mod;
(__a *= __b) %= __mod;
}
return __a;
};
} // namespace workspace