This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite"
#include <cstdio>
#include "src/algebra/modint.hpp"
#include "src/data_structure/deque_aggregation.hpp"
int main() {
using mint = workspace::modint<998244353>;
struct mono {
mint a = 1, b;
mono operator+(const mono& rhs) const {
auto [c, d] = rhs;
return {a * c, b * c + d};
}
};
deque_aggregation<mono> deq;
int q;
scanf("%d", &q);
while (q--) {
int t;
scanf("%d", &t);
if (t == 0) {
int a, b;
scanf("%d%d", &a, &b);
deq.push_back({a, b});
} else if (t == 1) {
deq.pop_front();
} else {
int x;
scanf("%d", &x);
auto [a, b] = deq.fold();
printf("%d\n", a * x + b);
}
}
}
#line 1 "test/library-checker/queue_operate_all_composite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/queue_operate_all_composite"
#include <cstdio>
#line 2 "src/algebra/modint.hpp"
/**
* @file modint.hpp
* @brief Modular Arithmetic
*/
#include <cassert>
#include <iostream>
#include <vector>
#line 2 "src/number_theory/sqrt_mod.hpp"
/**
* @file sqrt_mod.hpp
* @brief Tonelli-Shanks Algorithm
*/
#line 2 "src/number_theory/pow_mod.hpp"
/**
* @file mod_pow.hpp
* @brief Modular Exponentiation
*/
#line 9 "src/number_theory/pow_mod.hpp"
#line 2 "src/utils/sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#include <cstdint>
#include <iterator>
#include <type_traits>
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
std::declval<Container&>()))>::type;
template <class _Tp, class = void> struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<
_Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
: std::true_type {
using type = decltype(std::begin(std::declval<const _Tp&>()));
};
template <class _Tp, class = void> struct has_size : std::false_type {};
template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
: std::true_type {};
template <class _Tp, class = void> struct has_resize : std::false_type {};
template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
std::declval<size_t>()))>> : std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
template <class> struct first_arg { using type = void; };
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};
template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _Container, class = void> struct get_dimension {
static constexpr size_t value = 0;
};
template <class _Container>
struct get_dimension<_Container,
std::enable_if_t<has_begin<_Container>::value>> {
static constexpr size_t value =
1 + get_dimension<typename std::iterator_traits<
typename has_begin<_Container>::type>::value_type>::value;
};
} // namespace workspace
#line 11 "src/number_theory/pow_mod.hpp"
namespace workspace {
/**
* @brief Compile time modular exponentiation.
*
* @param __x
* @param __n Exponent
* @param __mod Modulus
* @return
*/
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> pow_mod(
_Tp __x, _Tp __n, _Tp __mod) noexcept {
assert(__mod > 0);
using mul_type = typename multiplicable_uint<_Tp>::type;
if ((__x %= __mod) < 0) __x += __mod;
mul_type __y{1};
while (__n) {
if (__n & 1) (__y *= __x) %= __mod;
__x = (mul_type)__x * __x % __mod;
__n >>= 1;
}
return __y;
};
} // namespace workspace
#line 10 "src/number_theory/sqrt_mod.hpp"
namespace workspace {
/**
* @brief Compile time modular square root.
*
* @param __x
* @param __mod Modulus
* @return One if it exists. Otherwise -1.
*/
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> sqrt_mod(
_Tp __x, _Tp __mod) noexcept {
assert(__mod > 0);
using mul_type = typename multiplicable_uint<_Tp>::type;
if ((__x %= __mod) < 0) __x += __mod;
if (!__x) return 0;
if (__mod == 2) return __x;
if (pow_mod(__x, __mod >> 1, __mod) != 1) return -1;
_Tp __z = __builtin_ctz(__mod - 1), __q = __mod >> __z;
mul_type __a = pow_mod(__x, (__q + 1) >> 1, __mod), __b = 2;
while (pow_mod<_Tp>(__b, __mod >> 1, __mod) == 1) ++__b;
__b = pow_mod<_Tp>(__b, __q, __mod);
_Tp __shift = 0;
for (auto __r = __a * __a % __mod * pow_mod(__x, __mod - 2, __mod) % __mod;
__r != 1; (__r *= (__b *= __b) %= __mod) %= __mod) {
auto __bsf = __z;
for (auto __e = __r; __e != 1; --__bsf) (__e *= __e) %= __mod;
while (++__shift != __bsf) (__b *= __b) %= __mod;
(__a *= __b) %= __mod;
}
return __a;
};
} // namespace workspace
#line 14 "src/algebra/modint.hpp"
namespace workspace {
namespace _modint_impl {
template <auto _Mod, unsigned _Storage> struct modint {
static_assert(is_integral_ext<decltype(_Mod)>::value,
"_Mod must be integral type.");
using mod_type = std::make_signed_t<typename std::conditional<
0 < _Mod, std::add_const_t<decltype(_Mod)>, decltype(_Mod)>::type>;
using value_type = std::decay_t<mod_type>;
using reference = value_type &;
using const_reference = value_type const &;
using mul_type = typename multiplicable_uint<value_type>::type;
static mod_type mod; // Modulus.
static unsigned storage;
private:
template <class _Tp>
using modint_if = std::enable_if_t<is_integral_ext<_Tp>::value, modint>;
value_type value = 0; // within [0, mod).
struct direct_ctor_t {};
constexpr static direct_ctor_t direct_ctor_tag{};
// Direct constructor
template <class _Tp>
constexpr modint(_Tp __n, direct_ctor_t) noexcept : value(__n) {}
public:
constexpr modint() noexcept = default;
template <class _Tp, class = std::enable_if_t<
std::is_convertible<_Tp, value_type>::value>>
constexpr modint(_Tp __n) noexcept
: value((__n %= mod) < _Tp(0) ? static_cast<value_type>(__n) + mod
: static_cast<value_type>(__n)) {}
constexpr modint(bool __n) noexcept : value(__n) {}
constexpr operator reference() noexcept { return value; }
constexpr operator const_reference() const noexcept { return value; }
// unary operators {{
constexpr modint operator++(int) noexcept {
modint __t{*this};
operator++();
return __t;
}
constexpr modint operator--(int) noexcept {
modint __t{*this};
operator--();
return __t;
}
constexpr modint &operator++() noexcept {
if (++value == mod) value = 0;
return *this;
}
constexpr modint &operator--() noexcept {
if (!value)
value = mod - 1;
else
--value;
return *this;
}
constexpr modint operator+() const noexcept { return *this; }
constexpr modint operator-() const noexcept {
return {value ? mod - value : 0, direct_ctor_tag};
}
// }} unary operators
// operator+= {{
constexpr modint &operator+=(const modint &__x) noexcept {
if ((value += __x.value) >= mod) value -= mod;
return *this;
}
template <class _Tp> constexpr modint_if<_Tp> &operator+=(_Tp __x) noexcept {
__x %= mod, value += __x;
if (value < 0)
value += mod;
else if (value >= mod)
value -= mod;
return *this;
}
// }} operator+=
// operator+ {{
template <class _Tp>
constexpr modint_if<_Tp> operator+(_Tp const &__x) const noexcept {
return modint{*this} += __x;
}
constexpr modint operator+(modint __x) const noexcept { return __x += *this; }
template <class _Tp>
constexpr friend modint_if<_Tp> operator+(_Tp const &__x,
modint __y) noexcept {
return __y += __x;
}
// }} operator+
// operator-= {{
constexpr modint &operator-=(const modint &__x) noexcept {
if ((value -= __x.value) < 0) value += mod;
return *this;
}
template <class _Tp> constexpr modint_if<_Tp> &operator-=(_Tp __x) noexcept {
__x %= mod, value -= __x;
if (value < 0)
value += mod;
else if (value >= mod)
value -= mod;
return *this;
}
// }} operator-=
// operator- {{
template <class _Tp>
constexpr modint_if<_Tp> operator-(_Tp const &__x) const noexcept {
return modint{*this} -= __x;
}
constexpr modint operator-(const modint &__x) const noexcept {
return modint{*this} -= __x;
}
template <class _Tp>
constexpr friend modint_if<_Tp> operator-(_Tp __x,
const modint &__y) noexcept {
if (((__x -= __y.value) %= mod) < 0) __x += mod;
return {__x, direct_ctor_tag};
}
// }} operator-
// operator*= {{
constexpr modint &operator*=(const modint &__x) noexcept {
value =
static_cast<value_type>(value * static_cast<mul_type>(__x.value) % mod);
return *this;
}
template <class _Tp> constexpr modint_if<_Tp> &operator*=(_Tp __x) noexcept {
value = static_cast<value_type>(
value * ((__x %= mod) < 0 ? mul_type(__x + mod) : mul_type(__x)) % mod);
return *this;
}
// }} operator*=
// operator* {{
constexpr modint operator*(const modint &__x) const noexcept {
return {static_cast<mul_type>(value) * __x.value % mod, direct_ctor_tag};
}
template <class _Tp>
constexpr modint_if<_Tp> operator*(_Tp __x) const noexcept {
__x %= mod;
if (__x < 0) __x += mod;
return {static_cast<mul_type>(value) * __x % mod, direct_ctor_tag};
}
template <class _Tp>
constexpr friend modint_if<_Tp> operator*(_Tp __x,
const modint &__y) noexcept {
__x %= mod;
if (__x < 0) __x += mod;
return {static_cast<mul_type>(__x) * __y.value % mod, direct_ctor_tag};
}
// }} operator*
protected:
static value_type _mem(value_type __x) {
static std::vector<value_type> __m{0, 1};
static value_type __i = (__m.reserve(storage), 1);
while (__i < __x) {
++__i;
__m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod);
}
return __m[__x];
}
static value_type _div(mul_type __r, value_type __x) noexcept {
assert(__x != value_type(0));
if (!__r) return 0;
std::make_signed_t<value_type> __v{};
bool __neg = __x < 0 ? __x = -__x, true : false;
if (static_cast<decltype(storage)>(__x) < storage)
__v = _mem(__x);
else {
value_type __y{mod}, __u{1}, __t;
while (__x)
__t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x,
__v ^= __u ^= (__v -= __t * __u) ^= __u;
if (__y < 0) __neg ^= 1;
}
if (__neg)
__v = 0 < __v ? mod - __v : -__v;
else if (__v < 0)
__v += mod;
return __r == mul_type(1) ? static_cast<value_type>(__v)
: static_cast<value_type>(__r * __v % mod);
}
public:
static void reserve(unsigned __n) noexcept {
if (storage < __n) storage = __n;
}
// operator/= {{
constexpr modint &operator/=(const modint &__x) noexcept {
if (value) value = _div(value, __x.value);
return *this;
}
template <class _Tp> constexpr modint_if<_Tp> &operator/=(_Tp __x) noexcept {
if (value) value = _div(value, __x %= mod);
return *this;
}
// }} operator/=
// operator/ {{
constexpr modint operator/(const modint &__x) const noexcept {
if (!value) return {};
return {_div(value, __x.value), direct_ctor_tag};
}
template <class _Tp>
constexpr modint_if<_Tp> operator/(_Tp __x) const noexcept {
if (!value) return {};
return {_div(value, __x %= mod), direct_ctor_tag};
}
template <class _Tp>
constexpr friend modint_if<_Tp> operator/(_Tp __x,
const modint &__y) noexcept {
if (!__x) return {};
if ((__x %= mod) < 0) __x += mod;
return {_div(__x, __y.value), direct_ctor_tag};
}
// }} operator/
constexpr modint inv() const noexcept { return _div(1, value); }
template <class _Tp> constexpr modint pow(_Tp __e) const noexcept {
static_assert(not std::is_floating_point<_Tp>::value);
modint __r{mod != 1, direct_ctor_tag};
for (modint __b{__e < _Tp(0) ? __e = -__e, _div(1, value) : value,
direct_ctor_tag};
__e; __e /= 2, __b *= __b)
if (__e % 2) __r *= __b;
return __r;
}
template <class _Tp>
constexpr friend modint pow(modint __b, _Tp __e) noexcept {
static_assert(not std::is_floating_point<_Tp>::value);
if (__e < _Tp(0)) {
__e = -__e;
__b.value = _div(1, __b.value);
}
modint __r{mod != 1, direct_ctor_tag};
for (; __e; __e /= 2, __b *= __b)
if (__e % 2) __r *= __b;
return __r;
}
constexpr modint sqrt() const noexcept {
return {sqrt_mod(value, mod), direct_ctor_tag};
}
friend constexpr modint sqrt(const modint &__x) noexcept {
return {sqrt_mod(__x.value, mod), direct_ctor_tag};
}
friend std::istream &operator>>(std::istream &__is, modint &__x) noexcept {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') {
__neg = true;
__s.erase(__s.begin());
}
__x = 0;
for (char __c : __s) __x = __x * 10 + (__c - '0');
if (__neg) __x = -__x;
return __is;
}
};
template <auto _Mod, unsigned _Storage>
typename modint<_Mod, _Storage>::mod_type modint<_Mod, _Storage>::mod =
_Mod > 0 ? _Mod : 0;
template <auto _Mod, unsigned _Storage>
unsigned modint<_Mod, _Storage>::storage = _Storage;
} // namespace _modint_impl
constexpr unsigned _modint_default_storage = 1 << 24;
template <auto _Mod, unsigned _Storage = _modint_default_storage,
typename = std::enable_if_t<(_Mod > 0)>>
using modint = _modint_impl::modint<_Mod, _Storage>;
template <unsigned _Id = 0, unsigned _Storage = _modint_default_storage>
using runtime_modint = _modint_impl::modint<-(signed)_Id, _Storage>;
template <unsigned _Id = 0, unsigned _Storage = _modint_default_storage>
using runtime_modint64 = _modint_impl::modint<-(int_least64_t)_Id, _Storage>;
} // namespace workspace
#line 4 "src/data_structure/deque_aggregation.hpp"
// implementation with dynamic memory allocation.
template <class monoid>
class deque_aggregation
{
template <bool left_operand_added>
class stack_aggregation
{
friend deque_aggregation;
struct data { monoid value, acc; };
size_t capacity;
data *stack, *end, *itr;
bool top_referred;
void recalc()
{
if(top_referred)
{
assert(itr != stack);
top_referred = false;
monoid top_val{top().value};
pop();
push(top_val);
}
}
public:
stack_aggregation() : capacity(1), stack(new data[1]), end(std::next(stack)), itr(stack), top_referred() {}
~stack_aggregation() { delete[] stack; }
bool empty() const { return stack == itr; }
size_t size() const { return itr - stack; }
// copy of the element at the index.
data operator[](size_t index) const
{
assert(index < size());
recalc();
return stack[index];
}
// reference to the last element
data &top()
{
assert(itr != stack);
top_referred = true;
return *std::prev(itr);
}
void pop()
{
assert(itr != stack);
--itr;
top_referred = false;
}
void push(const monoid &mono)
{
recalc();
if(itr == end)
{
data *tmp = new data[capacity << 1];
std::swap(stack, tmp);
end = (itr = std::copy(tmp, tmp + capacity, stack)) + capacity;
capacity <<= 1;
delete[] tmp;
}
if(left_operand_added) *itr = data{mono, mono + fold()};
else *itr = data{mono, fold() + mono};
++itr;
}
monoid fold()
{
if(itr == stack) return monoid();
recalc();
return std::prev(itr)->acc;
}
}; // class stack_aggregation
stack_aggregation<true> left;
stack_aggregation<false> right;
void balance_to_left()
{
if(!left.empty() || right.empty()) return;
left.recalc(); right.recalc();
size_t mid = (right.size() + 1) >> 1;
auto *itr = right.stack + mid;
do { left.push((--itr)->value); } while(itr != right.stack);
monoid acc;
for(auto *p = right.stack + mid; p != right.itr; ++p, ++itr)
{
*itr = {p->value, acc = acc + p->value};
}
right.itr = itr;
}
void balance_to_right()
{
if(!right.empty() || left.empty()) return;
left.recalc(); right.recalc();
size_t mid = (left.size() + 1) >> 1;
auto *itr = left.stack + mid;
do { right.push((--itr)->value); } while(itr != left.stack);
monoid acc;
for(auto *p = left.stack + mid; p != left.itr; ++p, ++itr)
{
*itr = {p->value, acc = p->value + acc};
}
left.itr = itr;
}
public:
bool empty() const { return left.empty() && right.empty(); }
size_t size() const { return left.size() + right.size(); }
// reference to the first element.
monoid &front() { assert(!empty()); balance_to_left(); return left.top().value; }
// reference to the last element.
monoid &back() { assert(!empty()); balance_to_right(); return right.top().value; }
// copy of the element at the index.
monoid operator[](size_t index) const
{
assert(index < left.size() + right.size());
return index < left.size() ? left[index].value : right[index - left.size()].value;
}
void push_front(const monoid &mono) { left.push(mono); }
void push_back(const monoid &mono) { right.push(mono); }
void pop_front()
{
assert(!empty());
balance_to_left();
left.pop();
}
void pop_back()
{
assert(!empty());
balance_to_right();
right.pop();
}
monoid fold() { return left.fold() + right.fold(); }
}; // class deque_aggregation
#line 7 "test/library-checker/queue_operate_all_composite.test.cpp"
int main() {
using mint = workspace::modint<998244353>;
struct mono {
mint a = 1, b;
mono operator+(const mono& rhs) const {
auto [c, d] = rhs;
return {a * c, b * c + d};
}
};
deque_aggregation<mono> deq;
int q;
scanf("%d", &q);
while (q--) {
int t;
scanf("%d", &t);
if (t == 0) {
int a, b;
scanf("%d%d", &a, &b);
deq.push_back({a, b});
} else if (t == 1) {
deq.pop_front();
} else {
int x;
scanf("%d", &x);
auto [a, b] = deq.fold();
printf("%d\n", a * x + b);
}
}
}